Меню

Датчик холла в телефоне: Что такое датчик Холла в телефоне, для чего нужен и как работает

Содержание

Датчик Холла в телефоне — зачем нужен и как используется? | AndroidLime

Датчик Холла — деталь в смартфоне, которая может обнаруживать магнитное поле. В отличие от магнитных датчиков, отвечающих за работу компаса в телефоне, датчик Холла выполняет немного другие функции.

Что такое датчик Холла и как он используется?

Датчик Холла является миниатюрной деталью размером с головку спички. Его основная задача — определять наличие или отсутствие магнитного поля без привязки к осям. После определения датчик отправляет соответствующий сигнал на телефон. С помощью только датчика Холла нельзя определить стороны света, а значит и использовать телефон в качестве компаса. Однако можно приводить в действие другие важные функции.

Обычно датчик Холла работает в паре с магнитным датчиком. В этом случае его главная задача заключается в том, чтобы ускорять запуск GPS-навигатора и улучшать географическое положение.

Функции датчика Холла в смартфоне

Кроме того, что датчик Холла позволяет магнитным датчикам более точно определять стороны света и положение телефона, он выполняет и другие задачи. Одна из них — работа с умными чехлами для телефонов. В обложку умных чехлов (Smart Case) встраивают небольшую магнитную защелку. Так как датчик Холла может определять наличие или отсутствие магнитного поля, он может распознать, на каком расстоянии находится магнит. Если обложка чехла закрыта (магнит близко), датчик Холла передает эту информацию, и экран телефона гаснет. Если обложка открыта (магнит далеко), экран автоматически активируется.

Таким образом датчик Холла позволяет значительно экономить заряд батареи, деактивируя экран телефона, когда он не используется. В зависимости от чехла, дисплей может гаснуть полностью или оставлять небольшое активное окошко, в котором будут расположены часы, дата и другая минимальная информация.

По такому же принципу работают телефоны-раскладушки. Как только телефон складывается, датчик Холла определяет это и гасит экран до следующего открытия устройства.

Таким образом, главная задача датчика Холла — помогать магнитному датчику точнее определять направления, а также ускорять запуск GPS-навигатора. Также этот датчик позволяет телефону взаимодействовать с умными чехлами для экономии заряда батареи мобильного устройства.

Знаете другие функции датчика Холла? Пишите комментарии!

как работает и зачем нужен?

Здравствуйте, дорогие читатели! Чтобы смартфон исправно выполнял свои функции, а также имел более широкий спектр возможностей, его оснащают разными датчиками.  Один из таких – датчик Холла. Предлагаем разобраться, что это и для чего он нужен в телефоне.

Блок: 1/5 | Кол-во символов: 268
Источник: http://digital-boom.ru/aksessuary/datchik-holla-v-telefone.html

Определение и принцип работы

Датчик Холла – это измерительное устройство, целью которого является определение наличия и всех сопутствующих параметров магнитного поля. Своё название он получил в честь так называемого «эффекта Холла» и ученного Эдвина Холла, который и открыл эффект еще в 1879 году.

Учёный в лабораторных условиях изучал свойства электрического тока.

В результате, была определена прямая зависимость между током и магнитным полем: после того, как элементы электрической цепи были помещены в зону действия магнитного поля, напряжение тока в проводнике изменялось в зависимости от интенсивности магнитных излучений.

Фактически, это устройство определяет наличие магнитного поля. Напряжение поля им не измеряется. В результате, смартфон или другой гаджет может легко взаимодействовать с пространством, заменяя привычный компас и другие приборы.

Рис.2 – схема работы прибора

Первые приборы Холла использовались в сфере машиностроения: в автомобилях и заводских установках. В автомобилях измерял угол распредвала/коленвала.

В более старых моделях машин, прибор позволял определить момент появления искры.

С течением времени и научно-технического прогресса датчики начали использовать во многих предметах, встречающихся в быту: бесконтактные выключатели, устройства для определения уровня жидкости и другие.

Также, результат работы датчика Холла является основой аппарата для считывания магнитных кодов.

Устройство используется в сфере безопасности – для организации защиты периметра. Датчик измеряет любые изменения в магнитном поле, постоянно контролируя безопасность на охраняемом объекте.

вернуться к меню

Блок: 2/6 | Кол-во символов: 1639
Источник: http://geek-nose.com/datchik-xolla-v-telefone-chto-eto/

Датчик Холла в телефоне: что это такое

Измерительное устройство названо в честь Эдвина Холла, который в лабораторных условиях изучал свойства электрического поля. Он выявил зависимость тока и магнитного поля. Если не вдаваться в подробности, датчик Холла определяет присутствие магнитного поля. В итоге смартфон взаимодействует с пространством, выполняя функцию компаса или другого измерительного прибора, построенного на основе принципа работы этого датчика.

Первые разработки ученого были использованы в области создания автомобилей (определение угла распредвала) и машиностроения. С развитием технического прогресса, датчик стал применяться в бесконтактных выключателях, для измерения уровня жидкости и т.д.

Зачем датчик холла в смартфоне

В «умной» технике этот прибор используется в составе экранного модуля. При его участии выполняется бесконтактное управление некоторыми функциями телефона. Поскольку датчик занимает много места, то зачастую используются не все его возможности. Большинство флагманских устройств комплектуется этим прибором.

К основным задачам датчика Холла в смартфоне относятся:

  • Функция компаса. Благодаря прибору, смартфон может выступать в роли компаса, определяя направление сторон света.
  • Улучшение геопозиционирования. На основе показателей датчика происходит более точная корректировка положения устройства в пространстве. Кроме того, благодаря ему выполняется быстрый старт GPS модуля.
  • Взаимодействие с чехлом. Чехол-книжка, в крышку которого вмонтирован магнит, будет сигнализировать смартфону о своем положении. На основе полученной информации происходит автоматическая блокировка и разблокировка устройства.
  • Определение положения крышки в телефонах-раскладушках.
  • Улучшение функции автоматического поворота экрана.
  • Более точная корректировка параметров изображения при съемке (изменение яркости, контрастности).

Блок: 2/4 | Кол-во символов: 1833
Источник: https://mobila.guru/faqsingle/datchik-holla-v-telefone-kak-rabotaet-i-zachem-nuzhen/

Для чего он нужен в телефоне?

Несколько лет назад, магнитометр с дюжиной возможностей можно было встретить только во флагманских смартфонах. Сейчас же, он установлен практически в каждый телефон. Смартфон, укомплектованный магнитометром (работающим по принципу датчика Холла) позволял измерять величину электромагнитной индукции различных приборов, управлять бесконтактно некоторыми функциями телефона (например листание фотографий с помощью жестов, без физического контакта) и т.д.

Хотя магнитометр и установлен во множество мобильных устройств, не в каждом его функции реализованы на полную.

Делается это по техническим (например, не хватает места в конструкции телефона или для уменьшения энергопотребления) и финансовым (в бюджетных моделях) причинам. Если убрать все дополнительные функции, задача упомянутого сенсора сводится к двум основным функциям:

  1. Цифровой компас. Используется навигационными программами для ускорения позиционирования и более точного определения направления движения. При помощи датчика, GPS поиск происходит быстрее.
  2. Взаимодействие с аксессуарами. Приобретя магнитный чехол для смартфона, датчик позволит смартфону включать и отключать дисплей в зависимости от удаления/приближения магнита на аксессуаре.

Эффект «выключения дисплея» можно заметить при закрытой крышке в раскладных телефонах.

Блок: 3/4 | Кол-во символов: 1333
Источник: https://vr4you.net/31-what-is-the-hall-sensor-in-the-smartphone.html

Датчик Холла в телефоне

Поскольку телефон представляет собой компактное портативное устройство, очевидно, что и все его детали должны быть выполнены в уменьшенном варианте.

Так, датчик Холла в телефоне является всего лишь микросхемой, которая в таком мини формате выполняет хоть и ограниченный список функций, но при этом все равно остаётся незаменим. Перечислим главные его задачи:

  • Автоматическая регулировка яркости дисплея смартфона в зависимости от освещения.
  • Блокировка экранf при закрытии крышки телефона и его активация при открытии. Характерно для раскладушек.
  • Обеспечивает автоматический поворот экрана при соответствующих движениях, меняющих вертикальное положение гаджета на горизонтальное и наоборот. А также считывание направления движений во время игры.
  • Работает в качестве цифрового компаса, даёт точное положение в GPS-навигаторе.
  • Взаимодействует с магнитным чехлом (при его наличии), таким образом, экономит заряд устройства.

Возможно, вам будет интересна статья «Как распечатать фото с телефона на принтере».

Блок: 3/5 | Кол-во символов: 1028
Источник: http://digital-boom. ru/aksessuary/datchik-holla-v-telefone.html

Применение в смартфонах

В смарт-технике датчик используется в качестве контроллера, который является частью дисплейного модуля.

Благодаря прибору Холла, пользователь может осуществлять бесконтактное управление телефоном. Микросхема есть практически во всех флагманских устройствах.

Также, он используется в игровых приставках.

Благодаря ему и работают игры Stars Dance, Guitar Hero и другие игры, управление в которых осуществляется только с помощью сканирования жестов пользователя.

Возможности датчика могут быть реализованы в смартфоне не полностью. Все зависит от класса телефона и его целевой аудитории.

Более дешевые гаджеты тоже могут иметь встроенный контроллер, однако, с его помощью юзер сможет использовать смартфон как, к примеру, компас. Реализация возможностей зависит еще и от размеров смартфона, так как аппаратный компонент требует достаточно много места под крышкой.

Задачи прибора в смартфоне

:

  • Функция встроенного цифрового компаса. Устройство может использоваться программным обеспечением. Все навигационные приложения или другие типы утилит используют возможности датчика для улучшенного позиционирования смартфона в пространстве. Также, с помощью встроенной микросхемы и эффекта устройства можно определить направление движения телефона. Такая возможность пригодиться в играх, при создании онлайн-маршрутов;
  • Взаимодействие с аксессуарами. Свойства датчика позволяют расширить функционал смартфона, если у вас есть магнитный чехол. С его помощью владелец может блокировать или получать доступ к рабочему столу, не открывая чехол-книжку;
  • В раскладных телефонах он используется для автоматического включения и отключения дисплея, когда крышка гаджета изменяет положение;
  • Работа функции «Автоповорот» экрана возможна благодаря микроконтроллеру Холла;
  • Автоматическая коррекция изображения в режиме съемки или изменение уровня яркости/контрастности дисплея в разное время суток.

Рис.3 – пример работы прибора

вернуться к меню

Блок: 3/6 | Кол-во символов: 1962
Источник: http://geek-nose.com/datchik-xolla-v-telefone-chto-eto/

Распространение и типы контроллера

Датчики бывают трёх видов:

  • Униполярные;
  • Биполярные;
  • Омниполярные.

Первый вариант реагирует только на один магнитный полюс.

Униполярные используются в современных микропроцессорных системах (смартфонах, планшетах, игровых приставках и прочих гаджетах).

Для активации работы датчика Холла достаточно поднести к устройству один полюс магнита.  На другой полюс телефон реагировать не будет.

Для деактивации работы достаточно убрать магнит от девайса.

Биполярные магниты используются в автомобилях, ракетной технике, авиации. Принцип работы биполярного датчика заключается в том, что он реагирует на оба полюса магнита. После поднесения одного полюса к нему, он будет продолжать работать даже после того, как будет убран. Выключить работу контроллера можно только с помощью противоположного полюса.

Цифровые Омниполярные контроллеры могут включаться и отключаться как от южного, так и от северного полюса магнита.

вернуться к меню

Блок: 4/6 | Кол-во символов: 986
Источник: http://geek-nose.com/datchik-xolla-v-telefone-chto-eto/

Магнитный чехол

Обращали ли Вы внимание на чехлы в виде книжки, которые автоматически блокируют экран при закрытии и включают его при открытии? Как это происходит?

Ответ прост: это происходит за счет того, что такие чехлы меняют магнитное поле за счет флипа (магнита), на который реагирует датчик Холла.

Часто в продаже имеются магнитные чехлы с окошком. В нём обычно отображается самая важная информация в смартфоне (время, пропущенные звонки, непрочитанные сообщения и т. д.), которую можно узнать, не раскрывая чехол. Как так получается, что часть экрана остаётся включённым? И здесь вновь фигурирует Датчик Холла. В данном случае он сам автоматически определит, заблокировать дисплей частично или полностью. На самом деле это очень удобно и практично, поскольку расход батареи снижается за счёт того, что вся необходимая информация «как на ладони», и, тем самым, это освобождает Вас от частого пользования смартфона ради проверки оповещений.

Блок: 4/5 | Кол-во символов: 947
Источник: http://digital-boom.ru/aksessuary/datchik-holla-v-telefone.html

Вывод

Стоит отметить, что работа магнитного чехла отрицательно никак не влияет на работу самого смартфона.

И ещё совет: при том, что датчик Холла очень полезен в гаджетах, не все производители прибегают к его помощи. Это значит, что, прежде чем покупать тот же магнитный чехол, необходимо примерить «костюмчик», чтобы удостовериться, что телефон на него реагирует, и что датчик в него встроен!

Всем удачи!

Блок: 5/5 | Кол-во символов: 427
Источник: http://digital-boom. ru/aksessuary/datchik-holla-v-telefone.html

Кол-во блоков: 11 | Общее кол-во символов: 11853
Количество использованных доноров: 4
Информация по каждому донору:
  1. https://vr4you.net/31-what-is-the-hall-sensor-in-the-smartphone.html: использовано 1 блоков из 4, кол-во символов 1333 (11%)
  2. http://digital-boom.ru/aksessuary/datchik-holla-v-telefone.html: использовано 4 блоков из 5, кол-во символов 2670 (23%)
  3. http://geek-nose.com/datchik-xolla-v-telefone-chto-eto/: использовано 3 блоков из 6, кол-во символов 4587 (39%)
  4. https://mobila.guru/faqsingle/datchik-holla-v-telefone-kak-rabotaet-i-zachem-nuzhen/: использовано 2 блоков из 4, кол-во символов 3263 (28%)

Есть ли датчик холла. Принцип действия датчика. Датчик Холла в телефоне: что это

Датчики представляют собою разнообразные устройства, состоящие из различных микроэлектромеханических компонентов, которые позволяют получать и считывать различные дополнительные данные. Это позволяет сделать более удобной работу с гаджетом и добавить ему функциональности.

Безусловно, общеизвестным является тот факт, что современные смартфоны напичканы множеством датчиков, но их применение и количество зачастую остается загадкой, потому как производители представляют общественности информацию только о самых основных из них, как, например, датчики приближения, гироскоп или же акселерометр.

Сегодня мы хотим вам рассказать, какие датчики могут быть в смартфоне и зачем они нужны.

Датчик ориентации или ускорения – акселерометр. Это самый обыкновенный вид датчика, который наблюдается чуть ли не в каждой модели смартфонов или планшетов. Необходим он для того, чтобы регистрировать пространственные повороты девайса из портретного положения в положение ландшафтное. Зачастую, конкретно акселерометр называется G-sensor. Обычно, существуют три оси, по которым датчиком регистрируется разница между ускорением самого объекта и гравитационным ускорением.

В последующем, процессор вычисляет значение разницы, анализирует, и направляет информацию в программное обеспечение. Согласно этой информации становится известно, в какой момент и куда поворачивать экран. Исходя из принципа работы, можно вывести главный недостаток датчика ориентации. Если значение ускорения крайне мало или его нет, то он останавливает процесс регистрации пространственного расположения девайса, или же погрешность в регистрировании достаточно высока. Это может оказывать отрицательное влияние на точности управления гаджетом в мобильных играх или в момент управления, к примеру, дроном. В таком случае помощь акселерометру оказывает следующий датчик.

Гироскоп. Необходим также для того, чтобы отмечать пространственное расположение девайса, но при этом свободно может осуществлять регистрацию угла наклона устройства по трем осям даже в том случае, если не происходит движение смартфона. Это повышает точность управления при игре на мобильном телефоне, так как разработчики благодаря гироскопу могут получать данные о том, насколько отклонилось устройство от каких-либо координат, и погрешность в таком случае равна примерно одному-двум градусам.

Датчик геомагнитного анализа. Он может реагировать на магнитные поля нашей планеты. Его еще частенько величают электронным компасом, потому что с его помощью девайс может отображать информацию о положении сторон света. Как пример, если есть геомагнитный датчик, смартфон может обходиться без GPS-модуля, определяя местоположение объекта. Это один из главных датчиков современных смартфонов и прочих устройств.

Зачастую для того, чтобы повысить точность, в смартфон устанавливаются еще датчики, работающие по схожему принципу, но обладающие более простым набором функций. Безусловно, пользователь может при помощи магнитометра выполнять его прямые функции – использовать его как металлоискатель, отыскивать проводку в стенах здания или как компас. В мобильных маркетах необходимо для этого искать нужное программное обеспечение.

Датчик приближения. Предоставляет возможность идентификации объекта и вычисления расстояния до него. В него входит излучатель инфракрасных лучей и их приемное устройство. Если приемное устройство не получает сигнал, это означает, что предмет отсутствует, а когда излучение попадает в приемник, то это свидетельствует о том, что существует предмет, отразивший собою луч. Широкое применение он находит, к примеру, отключая подсветку дисплея, когда смартфон поднесен к уху в момент звонка. Некоторые более прогрессивные варианты могут считывать некоторые жесты и в дальнейшем отвечать на это определенным действием. Порой датчик приближения может использоваться в случаях, когда при закрытии чехла необходимо погасить дисплей.

Датчик света или же датчик освещенности. Благодаря ему устройство может определять уровень освещенности окружающей соежы. Это позволяет автоматически изменять яркость подсветки дисплея. Это достаточно удобная функция – не приходится постоянно изменять уровень яркости экрана вручную. В более дорогих моделях смартфонов порой используется прогрессивная и расширенная версия датчика, которому под силу анализировать уровень интенсивности главных цветов (RGB), чтобы в последующем настроить цвета на дисплее или корректировать баланс белого в процессе фотографирования.

Промежуточный вывод

Если смартфон обладает только акселерометром, это говорит о том, что модель относится к самой бюджетной категории и обладает возможностью поворота экрана. Безусловно, порой производитель не предоставляет всеобъемлющую информацию о датчиках, которые есть в наличии, поэтому следует прочесть некоторые обзоры, где детально анализируется вся «начинка» мобильного устройства.

Если все датчики, что перечислены выше, имеются в смартфоне, а также в электронику устройства входят некоторые из тех, что будут рассмотрены ниже – это означает, что модель является довольно продвинутой.

Датчики, которые зачастую не встречаются в дешевых смартфонах

Датчик Hall. Позволяет улавливать и анализировать магнитные поля, но обладает весьма упрощенным механизмом работы. Реагирует на магнитное поле лишь в случае его усиления, а осевая напряженность не регистрируется. Будет удобен в случае, когда используются чехол SmartCover – дисплей гаснет в тот момент, когда улавливает приближение встроенного в чехол магнита. Стоит отметить, что если в числе поддерживаемых аксессуаров существует «умная обложка», то этот датчик в телефоне присутствует. Производитель не всегда могут указывать информацию о том, что сенсор встроен в устройство.

Барометр. Датчик, который позволяет определить значение атмосферного давления. Его можно использовать и по непосредственному предназначению, и в случаях, когда требуется определить уровень высоты над уровнем моря или выяснить расположение телефона.

Термометр. Предназначен для того, чтобы с высокой точностью определять температуру в окружающей его среде.

Гигрометр (или датчик влажности). Определяет уровень влажности. Как и предыдущий датчик, был представлен впервые в модели Galaxy S4, но теперь используется во многих смартфонах и прочих устройствах.

Педометр (или шагомер). По одному лишь названию данного сенсора можно догадаться, для чего он используется. Благодаря ему определяется, сделал ли человек шаг. Это автономный датчик, который с высокой точностью идентифицирует шаги, разгружая от работы акселерометр.

Датчик, сканирующий отпечатки пальцев. Конечно, было бы логичнее рассказывать про этот сенсор в статьях, где рассказывается про то, каким образом обеспечивается надлежащий уровень безопасности мобильного устройства. Но данный сенсор по достоинству может называться одним из наиболее необходимых и важных датчиков в современных смартфонах. Он позволяет не только повысить уровень безопасности устройства, но и открывать конкретные приложения, а также подтверждать транзакции.

Датчик, сканирующий сетчатку глаза. Позволяет считать и проанализировать уникальность сетчатки глаза. В моментах, когда необходимо обеспечивать безопасность смартфону. На слуху сенсор уже довольно-таки давно, но пока реализован он в немногих смартфонах.

Датчик, анализирующий биение сердца. Изначально был встроен в модели Galaxy S5 и применялся с той целью, чтобы телефон смог стать окончательно личным помощником и тренером. Приложение под названием S-Health умело получать гораздо больше информации о человеке на всех этапах тренировок, и это позволяло предоставлять пользователю лучшие индивидуальные рекомендации.

Датчик, регистрирующий насыщение крови кислородом. Не обладает аналогами, и также используется в вышеупомянутом приложении. Если подобные приложения появятся, то он сможет успешно работать и с ними.

Дозиметр. Позволяет получить и определить дозу или мощность ионизирующего излучения. Иначе говоря, при его использовании можно измерить фон радиоактивности.

Ряд вспомогательных датчиков смартфонов

Порой, для того, чтобы уровень точности был повышен, смартфоны обеспечиваются дополнительными сенсорами, которые обладают аналогичным, но более упрощенным набором функций.

  • Вспомогательный датчик, позволяющий осуществлять пространственную ориентацию.
  • Сенсор гравитации – указывает величину, а также направление силы тяжести.
  • Указывающий значение ускорения вдоль всех трех осей, при этом не обращая внимания на уровень силы тяжести.
  • Определяющий угол отклонения мобильного девайса в момент его вращения вокруг одной оси из трех.
  • Датчик, который может определять ряд заранее установленных движений, как, например, потряхивание.
  • Для определения жестов и движений.
  • Позволяющий отслеживать и идентифицировать лицо.
  • Датчик, который может получать лишь двойной клик по дисплею.
  • Отслеживающий поворот не всего гаджета, а только его дисплея.

Конечно же, могут существовать и многие другие разнообразные датчики, но все секреты и тайны их использования известны только лишь разработчикам какого-либо программного обеспечения или же операционных мобильных систем.

В современные смартфоны и планшеты встроено большое количество контроллеров и блоков. Одним из таких и является датчик Холла.

В этом материале мы расскажем, зачем он нужен в телефоне и как вообще он применяется в смарт-технике.

Они могут быть как основными деталями телефона ( , модуль памяти), так и вспомогательными (положения, приближения и другие элементы).

Встроенные измерители не только позволяют упростить работу гаджета, но и дополняют его функциональные возможности .

Cодержание:

Определение и принцип работы

Датчик Холла – это измерительное устройство, целью которого является определение наличия и всех сопутствующих параметров магнитного поля. Своё название он получил в честь так называемого «эффекта Холла» и ученного Эдвина Холла, который и открыл эффект еще в 1879 году.

Учёный в лабораторных условиях изучал свойства электрического тока.

В результате, была определена прямая зависимость между током и магнитным полем: после того, как элементы электрической цепи были помещены в зону действия магнитного поля, напряжение тока в проводнике изменялось в зависимости от интенсивности магнитных излучений.

Фактически, это устройство определяет наличие магнитного поля. Напряжение поля им не измеряется. В результате, смартфон или другой гаджет может легко взаимодействовать с пространством, заменяя привычный компас и другие приборы.

Первые приборы Холла использовались в сфере машиностроения: в автомобилях и заводских установках. В автомобилях измерял угол распредвала/коленвала.

В более старых моделях машин, прибор позволял определить момент появления искры.

С течением времени и научно-технического прогресса датчики начали использовать во многих предметах, встречающихся в быту: бесконтактные выключатели, устройства для определения уровня жидкости и другие.

Также, результат работы датчика Холла является основой аппарата .

Устройство используется в сфере безопасности – для организации защиты периметра. Датчик измеряет любые изменения в магнитном поле, постоянно контролируя безопасность на охраняемом объекте.

Применение в смартфонах

В смарт-технике датчик используется в качестве контроллера, который является частью дисплейного модуля.

Благодаря прибору Холла, пользователь может осуществлять бесконтактное управление телефоном. Микросхема есть практически во всех флагманских устройствах.

Также, он используется в игровых приставках.

Благодаря ему и работают игры Stars Dance, Guitar Hero и другие игры, управление в которых осуществляется только с помощью сканирования жестов пользователя.

Возможности датчика могут быть реализованы в смартфоне не полностью. Все зависит от класса и его целевой аудитории.

Более дешевые гаджеты тоже могут иметь встроенный контроллер, однако, с его помощью юзер сможет использовать смартфон как, к примеру, компас. Реализация возможностей зависит еще и от размеров смартфона, так как аппаратный компонент требует достаточно много места под крышкой.

Задачи прибора в смартфоне :

  • Функция встроенного цифрового компаса . Устройство может использоваться программным обеспечением. Все навигационные приложения или другие типы утилит используют возможности датчика для улучшенного позиционирования смартфона в пространстве. Также, с помощью встроенной микросхемы и эффекта устройства можно определить направление движения телефона. Такая возможность пригодиться в играх, при создании ;
  • Взаимодействие с аксессуарами . Свойства датчика позволяют расширить функционал смартфона, если у вас есть магнитный чехол. С его помощью владелец может блокировать или получать доступ к рабочему столу, не открывая чехол-книжку;
  • В раскладных телефонах он используется для автоматического включения и отключения дисплея, когда крышка гаджета изменяет положение;
  • Работа функции «Автоповорот» экрана возможна благодаря микроконтроллеру Холла;
  • Автоматическая коррекция изображения в режиме съемки или в разное время суток.

Распространение и типы контроллера

Датчики бывают трёх видов :

  • Униполярные;
  • Биполярные;
  • Омниполярные.

Первый вариант реагирует только на один магнитный полюс.

Униполярные используются в современных микропроцессорных системах (смартфонах, планшетах, и прочих гаджетах).

Для активации работы датчика Холла достаточно поднести к устройству один полюс магнита. На другой полюс телефон реагировать не будет.

Для деактивации работы достаточно убрать магнит от девайса.

Биполярные магниты используются в автомобилях, ракетной технике, авиации. Принцип работы биполярного датчика заключается в том, что он реагирует на оба полюса магнита. После поднесения одного полюса к нему, он будет продолжать работать даже после того, как будет убран. Выключить работу контроллера можно только с помощью противоположного полюса.

Цифровые Омниполярные контроллеры могут включаться и отключаться как от южного, так и от северного полюса магнита.

Как проверить наличие в смартфоне?

Первый способ проверки наличия датчика – это описание характеристик телефона. Их можно найти в открытом доступе в интернете.

Однако, не во всех интернет-магазинах или форумах может упоминаться датчик Холла как один из встроенных модулей. Как правило, такая характеристика не вносится в число основных.

Если вы еще не приобрели телефон, зайдите на сайт производителя и скачайте электронную инструкцию по использованию смартфона.

В ней всегда детально описаны все аппаратные компоненты. Также, можно воспользоваться одним из следующих способов :

  • Почитайте отзывы о гаджете. Возможно, другие владельцы обозначили наличие датчика;
  • Задайте вопрос администрации интернет-магазина , через который планируете покупать товар;
  • Найдите тематические группы, которые посвящены модели телефона , и в них задайте интересующий вопрос владельцам аналогичных телефонов;
  • Посмотрите видео обзоры гаджета на YouTube. Как правило, они являются полными и упоминают обо всех аппаратных и программных особенностях телефона.

Если вы уже купили телефон и хотите проверить наличие контроллера Холла, нет необходимости выполнять вышеуказанные действия. Возьмите магнит любого размера и приложите его к экрану телефона. Гаджет со встроенным датчиком мгновенно погаснет и заработает снова только после того, как вы уберете магнит.

В представленном видеоролике наглядно продемонстрирован простой способ определения датчика в смартфоне :

Современные мобильные устройства оснащаются большим количеством функциональных блоков, среди которых – не только основные элементы, но и вспомогательные датчики. Если о том, что такое акселерометр, сенсор освещенности и гироскоп знают многие пользователи, то по поводу датчика Холла нередко возникают вопросы.

Датчики Холла, используемые в современных смартфонах, это измерительные элементы, которые позволяют определять наличие и интенсивность магнитного поля, а также его изменения. Свое название они получили в честь американского ученого Эдвина Холла, который еще в 1879 году открыл эффект изменения напряжения тока на проводнике при его помещении в магнитное поле.

Магнитный поток, взаимодействующий с датчиком Холла

Зачем нужен датчик Холла в смартфоне

В зависимости от уровня реализации, этот сенсор обладает довольно широкими возможностями. Среди них – измерение величины электромагнитной индукции различных приборов, возможность реализации бесконтактного управления и другие функции. Магнитометр, основанный на датчике Холла, в современных смартфонах встречается достаточно часто. Особенно в флагманских устройствах.

Но в большинстве мобильных устройств не все возможности датчика Холла реализованы в полной мере. Ограниченное пространство под крышкой, желание снизить потребление заряда аккумулятора, отсутствие широкого интереса и острой потребности в реализации новых функций сводят использование сенсора к двум задачам:

  • Первая из них – это цифровой компас. Он используется навигационными программами для ускорения позиционирования и более точного определения направления движения.
  • Второй областью применения датчика Холла, наиболее востребованной владельцами смартфонов, является улучшение взаимодействия устройства с магнитными чехлами и другими аксессуарами.
  • Использование датчика Холла в телефонах «раскладушках», чтобы включать или выключать экран при закрытии или открытии крышки.

Как смартфон взаимодействует с магнитными чехлами

Самым простым примером реализации взаимодействия чехла с магнитом и смартфона является автоматическая блокировка/разблокировка экрана при закрытии/открытии чехла. Датчик Холла реагирует на приближение магнита, расположенного в флипе, регистрируя усиление поля, и блокирует дисплей. При открытии интенсивность излучения снижается и экран активизируется.

Чехлы с окошком в верхней части, которые оставляют часть дисплея открытой для возможности использования отдельных функций (звонки, проигрыватель, часы) без раскрытия флипа, тоже взаимодействуют с датчиком Холла. Регистрируя наличие/отсутствие повышенного магнитного поля, смартфон определяет, оставлять активным весь экран или только его часть.

Еще одним примером аксессуара, требующего наличия датчика Холла, являются Google CardBoard – доступные очки виртуальной реальности, использующие смартфон. Так как при использовании устройства телефон находится внутри, единственным способом управления остается удаленное взаимодействие магнита, встроенного в единственную «кнопку» аксессуара, с датчиком Холла.

В смартфонах и планшетах могут применяться сразу несколько датчиков, которые помогают устройству считывать дополнительную информацию. Некоторое время назад мы рассказывали об . Сегодня поговорим о другом датчике, а именно — о датчике Холла.

Что это такое?

Датчик Холла, использующийся в современных мобильных устройствах, представляет из себя измерительный элемент, который способен определять наличие, интенсивность и изменение интенсивности магнитного поля. Датчик назван по имени американского физика Эдвина Холла, в честь которого был назван открытый в 1879 году «эффект Холла» — явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

Суть в следующем: если в магнитное поле поместить пластину под напряжением, электроны в пластине начнут отклоняться перпендикулярно направлению магнитного потока. Плотность электронов на разных сторонах пластины будет различаться, что в свою очередь приводит к разности потенциалов, которую улавливает датчик Холла.

Вот как выглядит датчик:

Для чего нужен датчик Холла в планшете или смартфоне?

Сам по себе датчик обладает достаточно широкими возможностями, хотя обычно его применяют по своему прямому назначению, измеряя напряженность магнитного поля. В частности, датчик используется в ракетных двигателях, в системе зажигания ДВС, для измерения уровня жидкости и т.п.

Встречается датчик и в современных мобильных устройствах, однако его возможности реализованы не в полной мере. Датчик фактически используется только в двух задачах.

  • Первая — это ставший уже привычным для обладателей смартфонов цифровой компас, который в том числе применяется для улучшения позиционирования.
  • Вторая задача, куда более актуальная, — это взаимодействие с популярными чехлами для смартфонов и планшетов.

Магнитные чехлы

Вы наверняка видели так называемые магнитные чехлы как для смартфонов, так и для планшетов. Они позволяют блокировать и разблокировать устройство при открытии/закрытии чехла. При этом в некоторых случаях на чехле есть окошко, где выводится определенная информация, например, время или уведомления.

Как это возможно? Установленный в устройстве датчик Холла реагирует на магнит, который расположен в самом чехле. Когда магнит расположен близко к устройству, датчик регистрирует усиление излучения, в результате чего блокирует дисплей. Когда пользователь открывает флип-чехол (чехол-книжка), датчик фиксирует уменьшение интенсивности излучения и разблокирует экран.

В перечне сенсоров, которыми оснащён смартфон, подчас можно встретить датчик Холла – пожалуй, самый загадочный из всех известных датчиков. Если функции, скажем, пульсометра и шагомера понятны и очевидны, то назначение датчика Холла известно отнюдь не всякому пользователю. В этой статье мы расскажем, кто же такой Холл и почему датчик, названный его именем, становится всё более популярным.

Эдвин Холл – американский учёный-физик. Своё знаменитое открытие он сделал ещё в 19-м веке. Холл обнаружил, что если проводник (например, металлическую пластину), подключенный к источнику постоянного тока, поместить в магнитное поле, то на движущиеся электроны начнёт воздействовать сила Лоренца. Как следствие, электроны станут двигаться по дуге и тяготеть к одной из граней пластины. У этой грани электроны будут накапливать отрицательный заряд, а у противоположной – положительный. Разность потенциалов на 2-х краях пластины именуется холловским напряжением .

Кратко и ёмко об эффекте Холла рассказывает этот ролик:

Практическое применение эффекту Холла нашли лишь спустя 15 лет после гибели учёного. Сейчас на этом эффекте основана работа приводов дисководов ПК, кулеров компьютерной техники, систем зажигания автомобилей, даже ионных реактивных двигателей. О том, как применить открытие Холла в смартфоностроении, разработчики догадались относительно недавно.

Для чего нужен датчик Холла в смартфоне?

Датчиком Холла (его же называют магнитным датчиком ) оснащаются многие модели популярных производителей и некоторые смартфоны малоизвестных китайских марок. Этот сенсор предназначен для того, чтобы фиксировать холловское напряжение.

Датчик не измеряет напряжение, а лишь определяет его наличие или отсутствие, после чего подаёт смартфону сигнал. Получив сигнал, гаджет выполняет некоторое запрограммированное действие.

Как правило, использование датчика Холла на телефоне сводится к решению всего 2-х задач – вот зачем этот датчик нужен гаджету:

  • Сенсор ускоряет старт GPS-навигатора и улучшает геопозирование.
  • Датчик Холла обеспечивает возможность взаимодействия смартфона с магнитными чехлами.

Кроме того, благодаря открытию американского учёного стало возможным управление жестами – «фишка», которую пользователи впервые встретили на Samsung Galaxy S3 .

Разумеется, потенциал эффекта Холла в смартфоностроении раскрыт не полностью. Причина тому – ряд технических ограничений. Использовать открытие Холла «по полной» не позволяют компактные размеры современных мобильных устройств и аккумуляторы недостаточной мощности.

Принцип взаимодействия датчика Холла с мобильными аксессуарами

Благодаря датчику Холла мобильные устройства могут взаимодействовать с так называемыми «умными» чехлами (Smart Case ). В крышку подобного флипа вмонтирован магнит. Как только пользователь прикрывает крышку чехла, возникает эффект Холла, датчик передаёт сигнал об этом системе смартфона – и экран гаджета автоматически блокируется. Естественно, всё это происходит за считанные доли секунды. Когда владелец смартфона открывает крышку чехла, холловское напряжение «сходит на нет». Датчик даёт команду разблокировать дисплей.

Если владелец гаджета использует чехол с окошком (как на рисунке выше), то датчик Холла даёт команду не на полное отключение дисплея, а на его переключение с одного режима на другой. При закрытой крышке на доступную область экрана могут выводиться часы, календарь, музыкальный проигрыватель или список уведомлений.

Переживать по поводу того, что магнит «умного» чехла нанесёт вред начинке смартфона, точно ни к чему. Магнитное поле не портит гаджет – это было доказано многочисленными профессиональными и любительскими тестами .

Датчик Холла позволяет экономить заряд аккумулятора гаджета – это главное преимущество, которое предоставляет данный сенсор. Активированный экран смартфона при высокой яркости потребляет внушительное количество драгоценных миллиампер.

Какие смартфоны имеют датчик Холла?

К сожалению, не все производители в списках характеристик своих гаджетов указывают, есть ли у устройства датчик Холла. В кратком перечне параметров такой информации точно не найти. Однако пользователь может быть уверен: если под смартфон выпускается оригинальный Smart Case, значит, магнитным датчиком этот девайс точно оснащён.

Вот лишь некоторые из современных моделей, которые имеют датчики Холла:

Заключение

К сожалению, «лучшие умы» отрасли мобильной электроники так и не сумели придумать (пока?), как применить открытие Холла, чтобы реализовать его потенциал полностью. Автоматическое отключение / переключение дисплея – «детский лепет» по сравнению с тем, что можно было бы сделать, если бы удалось преодолеть технические ограничения. Однако поиски способов реализации холловского наблюдения ведутся – и прогресс не стоит на месте. Об этом может свидетельствовать, например, появление очков виртуальной реальности Google Card Board , управление которыми базируется на взаимодействии магнита и датчика Холла.

Основные датчики смартфона – какие бывают и зачем нужны?

Краткое описание основных датчиков современного смартфона, их назначение, какие из них необходимы, а без каких можно и обойтись.

Смартфоны сегодня оснащают множеством датчиков, работа которых часто не заметна. При этом их отсутствие резко уменьшает функционал телефона. На презентациях новинок их упоминают вскользь, хотя каждый из имеющихся датчиков делает работу со смартфоном удобнее и проще.

В этой короткой статье мы рассмотрим основные датчики, являющиеся неотъемлемой частью большинства современных смартфонов и их назначение.

Акселерометр

Акселерометр самый популярный на сегодняшний день датчик в смартфонах. Он измеряет ускорение тела в пространстве и отвечает за автоматический поворот изображения на дисплее.

Этим датчиком укомплектованы абсолютно все современные смартфоны, а его работа заключается в автоматической смене ориентации экрана при повороте устройства.

Гироскоп

Гироскоп в смартфоне определяет скорость углового вращения. Благодаря этому сенсору пользователь может поворотом гаджета управлять игрой. Он также используется при фотосъемке и для координирования дронов. Так же крайне полезен и есть практически везде.

Магнитометр (датчик Холла)

Магнитометр (магнитный компас) встречается не во всех смартфонах. Этот датчик измеряет уровень магнитного поля и используется для комфортной работы с навигационными сервисами и в случае запуска цифрового компаса. Работа с чехлами, которые позволяют разблокировать смартфон при открывании аксессуара, тоже зависит от наличия магнитометра.

Многие смартфоны не имеют аппаратного магнитометра, что не позволяет использовать соответствующие аксессуары. В них используется так называемый цифровой (программный) компас, который используется в навигации, но является менее точным.

Барометр

Встроенный в смартфон барометр позволит с высокой точностью определять атмосферное давление. С помощью этого датчика легко выяснить текущее положение над уровнем моря. Присутствие барометра существенно повышает точность данных GPS, но является привилегией топовых дорогих смартфонов.

Шагомер

Шагомер или педометр помогает контролировать пройденное расстояние, выраженное в количестве шагов. Наличие этого сенсора демонстрирует то, что владелец смартфона уделяет внимание физическим нагрузкам и состоянию своего здоровья.

Отдельный датчик шагов может быть только в некоторых смартфонах и умных часах, ориентированных специально на спортсменов и людей, которые хотят вести более подвижный образ жизни. В других смартфонах шаги считаются с помощью стандартных датчиков и специальных спортивных программ, но немного менее точно.

Датчик приближения

Датчик приближения является обязательным модулем, который блокирует экран во время разговора от случайных нажатий (когда экран прикладывается к щеке). Кроме этого, в некоторых более дорогих моделях успешно реализована система управления жестами с использованием датчика приближения.

Датчик освещенности

Датчик освещенности устанавливается для замера освещенности вокруг смартфона. На основе полученной с него информации смартфон может автоматически выставлять комфортную яркость экрана. Это крайне полезный датчик, облегчающий использование смартфона без необходимости постоянной ручной регулировки яркости, но может отсутствовать в некоторых бюджетных смартфонах.

На улице при ярком свете экран будет максимально ярким и хорошо читаемым, в помещении яркость будет снижаться до среднего уровня, а в вечернее время и затемненном помещении подсветка будет опускаться до минимального щадящего для глаз уровня.

Дактилоскопический сенсор

Стандартом в современных смартфонах в последние годы стал сканер отпечатка пальца. Используя этот способ разблокировки, можно закрыть доступ к устройству или отдельным приложениям от посторонних.

Разблокировка смартфона с помощью датчика отпечатка пальцев позволяет ускорить получения доступа к функционалу смартфона и предотвратить доступ к личным данным в случае его утери или кражи.

Сканер отпечатка пальца обеспечивает высокий уровень защиты смартфона, потому что в отличие от пароля или графического ключа найти способ разблокировки без заданного пальца практически невозможно.

Другие датчики

Есть и некоторые другие датчики, такие как термометр, датчик влажности, пульсометр (датчик сердцебиения), датчик вредного излучения (радиации). Но встречаются они крайне редко и их назначение вполне понятно, так что мы не будем на этом останавливаться.

Надеемся эта статья была для вас полезной и интересной, если так – поделитесь ей в соцсетях с помощью кнопочек слева

Смартфон Xiaomi Redmi 4a
Смартфон Xiaomi Redmi 5
Смартфон Xiaomi Redmi 5a

У смартфона sla l22 есть магнитный датчик.

Датчик холла в смартфоне

Современные телефоны сильно схожи с компьютерами — они устроены по общему принципу: материнская плата, процессор, видеоадаптер оперативная память.

Но главным отличием являются многочисленные датчики, без которых не обходится ни один смартфон: акселерометр, гироскоп, барометр, датчики температуры, освещённости приближения и т.д. Все они упрощают пользование телефоном и делают его умнее. Сегодня расскажем об особенностях и назначении магнитного датчика в современных смартфонах.

Зачем нужен магнитный датчик?

Этот датчик также принято называть . Эффект Холла был открыт почти 150 лет назад, но активно используется в разной технике по сегодняшний день. Датчик Холла обнаруживает магнитное поле, благодаря чему может определить положение смартфона в пространстве. Так, смартфон — достаточно скачать специальное приложение из Google Play (просто сделайте поиск по запросу «компас»).

В половине прошлого столетия датчик Холла использовали в автомобилях — это стало первым шагом внедрения таких технологий в быт человека. Далее разработку стали использовать в других сферах, включая мобильные технологии.

Магнитный датчик удобен вкупе с чехлом на магнитной застежке/защелке. За счёт этого можно сэкономить время, так как экран телефона будет автоматически выключаться при закрытии и включаться при открытии аксессуара. При наличии у чехла окошка незакрытое им пространство может быть активным, то есть можно будет проверять время, приложения и какие-то виджеты без открытия кейса и разблокировки смартфона. Нужно отметить, что магнит никак не вредит ни сенсору, ни другим датчикам или комплектующим телефона.

Как включить магнитный датчик на телефоне?

В большей части флагманов, выпускаемых как крупными брендами, так и более бюджетными компаниями, есть магнитный датчик. Он работает автоматически. Проверить наличие технологии можно в технических характеристиках определенного устройства или благодаря простым тестам:

  1. Можно сымитировать магнитный чехол, приложив к экрану телефона обыкновенный магнит. Если дисплей погаснет, значит сработал магнитный датчик.
  2. Скачайте приложение компаса, отключите интернет и проверьте, будет ли он работать. UPD. Нужно отметить, что в случае с компасом речь идет о более продвинутом геомагнитном датчике.

В смартфонах и планшетах могут применяться сразу несколько датчиков, которые помогают устройству считывать дополнительную информацию. Некоторое время назад мы рассказывали об . Сегодня поговорим о другом датчике, а именно — о датчике Холла.

Что это такое?

Датчик Холла, использующийся в современных мобильных устройствах, представляет из себя измерительный элемент, который способен определять наличие, интенсивность и изменение интенсивности магнитного поля. Датчик назван по имени американского физика Эдвина Холла, в честь которого был назван открытый в 1879 году «эффект Холла» — явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

Суть в следующем: если в магнитное поле поместить пластину под напряжением, электроны в пластине начнут отклоняться перпендикулярно направлению магнитного потока. Плотность электронов на разных сторонах пластины будет различаться, что в свою очередь приводит к разности потенциалов, которую улавливает датчик Холла.

Вот как выглядит датчик:

Для чего нужен датчик Холла в планшете или смартфоне?

Сам по себе датчик обладает достаточно широкими возможностями, хотя обычно его применяют по своему прямому назначению, измеряя напряженность магнитного поля. В частности, датчик используется в ракетных двигателях, в системе зажигания ДВС, для измерения уровня жидкости и т.п.

Встречается датчик и в современных мобильных устройствах, однако его возможности реализованы не в полной мере. Датчик фактически используется только в двух задачах.

  • Первая — это ставший уже привычным для обладателей смартфонов цифровой компас, который в том числе применяется для улучшения позиционирования.
  • Вторая задача, куда более актуальная, — это взаимодействие с популярными чехлами для смартфонов и планшетов.

Магнитные чехлы

Вы наверняка видели так называемые магнитные чехлы как для смартфонов, так и для планшетов. Они позволяют блокировать и разблокировать устройство при открытии/закрытии чехла. При этом в некоторых случаях на чехле есть окошко, где выводится определенная информация, например, время или уведомления.

Как это возможно? Установленный в устройстве датчик Холла реагирует на магнит, который расположен в самом чехле. Когда магнит расположен близко к устройству, датчик регистрирует усиление излучения, в результате чего блокирует дисплей. Когда пользователь открывает флип-чехол (чехол-книжка), датчик фиксирует уменьшение интенсивности излучения и разблокирует экран.

Современный смартфон может быть настолько многофункциональным, что его владелец не всегда в курсе всех характеристик и возможностей своего аппарата. Например, вы знаете, что такое датчик Холла в смартфоне? Как он работает и для чего нужен? Предлагаем вам узнать об этой характеристике больше!

Что значит датчик Холла в смартфоне?

Мы уже в курсе, зачем гаджету модуль приближения или гироскоп. Но что такое датчик Холла в смартфоне? Это определитель положения, чье действие основано на эффекте Холла. Данный приборчик фиксирует как наличие магнитного поля, так и измеряет его напряженность.

Датчик и сам эффект назван по имени известного физика Э. Холла. Именно этот ученый установил, что при помещении в центр магнитного поля проводника-пластины, по которой идет переменный ток, в нем (поле) проявится холловское напряжение — поперечная разность потенциалов.

В описанном случае электроны в проводнике отклоняются строго перпендикулярно направлению самого магнитного поля. Отсюда их плотность на разных частях пластины будет отличной. Вот эту разность потенциалов и фиксирует измеритель.

А что такое датчик Холла в смартфоне? Это еще более простой прибор — он призван определять лишь наличие магнитного поля, не измеряя его напряженность. Кроме того, гаджет наверняка снабжён еще и магнитным датчиком, который позволяет использовать ваш смартфон в качестве компаса.

Где он применяется?

Мы с вами установили, что такое датчик Холла в смартфоне. Однако гаджеты — это не единственная сфера применения изобретения, которое также отличается возможностью бесконтактного управления каким-либо устройством.

Надо сказать, что эффект Холла был открыт сравнительно давно — в 1879 году. А впервые применили его на практике только спустя 75 лет после этого события. Полезен он оказался для автомобилей — датчик использовали для измерения угла расположения коленвала, распредвала. В более старых моделях машин датчик Холла определял момент образования искры.

  • бесконтактные выключатели;
  • системы, предназначенные для чтения магнитных кодов;
  • устройства, используемые для бесконтактного определения в проводниках силы тока;
  • измерители уровня жидкости;
  • ионные ракетные двигатели.

Кроме того, было выяснено, что датчик Холла способен заменять магнитоуправляемые герметичные контакты — герконы. Они имеют широкую сферу применения: микроэлектроника, охранные сигнализации, клавиатуры, лифты, наушники.

Зачем датчик Холла в смартфоне?

Мы с вами выяснили, что данный прибор определяет наличие магнитного поля. Но тогда для чего нужен датчик Холла в смартфоне сегодня? Все просто — он определяет, открыт или закрыт «умный» чехол с магнитной застежкой. Если магнит далеко (датчик «не видит» его на определенном расстоянии), то дается команда на включение дисплея. Если же застежка близко (а значит, пользователь закрыл чехол), то датчик сигнализирует системе, что экран нужно перевести в спящий режим.

Полезен этот измеритель и для бамперов для смартфонов с «окошком» на дисплее. Так, например, если вы захлопнули чехол, то датчик Холла это фиксирует. Он дает сигнал системе, что нужно транслировать на экране заставку, специально предназначенную для «оконца». Чаще всего это время, дата, важные уведомления. Убрали дверку чехла — команда от датчика на отображение на дисплее полной информации.

Другие функции в смартфонах

Взаимодействие с магнитными крышками — это самое распространенное применение датчика в современных гаджетах. Однако надо отметить, что он с успехом использовался в более ранних моделях смартфонов:

  • Функция «цифровой компас» действовала благодаря датчику Холла. И сегодня он используется навигационными приложениями для общего улучшения позиционирования и более высокой точности определения вектора движения.
  • Активация/дезактивация подсветки при открытии/закрытии устройства-«раскладушки». Здесь действие схоже с современной ситуацией с магнитными крышками чехлов.

Есть ли в моем телефоне датчик Холла?

Чтобы ответить на вопрос в подзаголовке, проще всего обратиться к характеристике вашего гаджета на официальном сайте производителя или в инструкции к девайсу. Однако не все изготовители указывают, снабжено ли конкретное устройство датчиком Холла.

Но существует простой способ проверки. Если к модели вашего смартфона выпускаются «умные» обложки или чехлы (в т. ч. и с «окошками»), имеющие магнитную застежку, то, скорее всего, в аппарате датчик Холла есть.

Среди популярных сегодня на рынке моделей этот модуль имеют следующие:

  • Lenovo Vibe S1.
  • Meizu Pro5.
  • Meizu M2 Mini.
  • LG Nexus 5X.
  • Meizu M2 Note и проч.

К сожалению, в современных смартфонах возможности датчика Холла сильно усечены. Это объясняется минимизацией толщины корпуса, желанием производителя снизить расход заряда батареи, отсутствием потребности в расширенных за счет него функциях. Сегодня задач у датчика две — взаимодействие с «умным» чехлом или обложкой и карманный компас.

Немногие знают о том, что смартфоны оснащены многочисленными датчиками, включая средства измерения освещенности приближения и температуры, барометр, акселерометр, гироскоп и другие. Они предназначены для того, чтобы упростить пользование устройством.

В этой статье мы поговорим о датчике Холла (магнитном датчике). Американский ученый Эдвин Холл еще около 140 лет назад открыл явление, которое было названо впоследствии эффект Холла. Он и по сей день активно используется в современной технике.

Назначение магнитного датчика

Датчик Холла в смартфоне призван обнаружить магнитное поле, что позволит определить положение самого устройства относительно сторон света. Таким образом, скачав приложение «Компас» из магазина для Андроид Google Play, ваш смартфон может выполнять функцию компаса.

Первым шагом внедрения данной технологии стало использование этого датчика в автомобилях. С помощью него проводили измерение угла распредвала и коленвала, а также момент образования искры. Позднее эффект Холла начали применять и в других технологиях, включая мобильные устройства.

Цифровой компас в телефонах используется навигационными программами для корректировки вектора движения и определения точных координат телефона. Раньше такой магнитометр был встроен только во флагманские телефоны, теперь же он распространен повсеместно. Функции такого датчика весьма обширны. Рассмотрим их более подробно.

Функции магнитометра

В телефонах-раскладушках он использовался для активации подсветки при открытии устройства. Еще одно предназначение датчика заключается в синхронизации работы смартфона с чехлом с магнитной застежкой.

Если магнит, расположенный на чехле, расположен на некотором расстоянии от устройства, то датчик реагирует следующим образом: он перестает его распознавать, давая команду на включение экрана.

При закрытии чехла, когда застежка расположена близко, дисплей телефона автоматически переводится в спящий режим. Если в чехле имеется «окошко», то незакрытое пространство, в котором располагаются различные виджеты, может продолжать быть активным. Таким образом, при закрытии чехла транслируется на заставке лишь видимая часть, при открытии – становится активным весь экран.

Также датчик позволяет бесконтактно управлять рядом функций, которые имеются в смартфоне. Магнит на чехле никаким образом не оказывает негативного влияния ни на сам сенсор, ни на комплектующие телефона.

Как активировать датчик?

Сейчас магнитометр находится во множестве мобильных устройств, но в основном его функции используются не полностью ввиду ряда причин. По финансовым причинам – в бюджетных моделях, а также в связи с конструктивными особенностями (минимальными размерами толщины корпуса) и желанием снизить расход заряда аккумулятора.

Сенсор в подавляющем большинстве случаев выполняет две функции: взаимодействие с аксессуарами и цифровой компас. Его не нужно включать и настраивать, так как датчик запускается в автоматическом режиме.

Определить же наличие сенсора в телефоне можно двумя способами: просмотрев технические характеристики смартфона или же протестировав устройство при помощи приложение «Компас», который должен начать функционировать при выключенном интернете. Также есть второй способ: приложите к дисплею магнит. Если экран погаснет, то в телефоне имеется встроенный магнитометр.

2 года назад



У всех современных мобильных устройств много функциональных блоков. И среди них не только основные элементы. Есть также и вспомогательные датчики.

Многие пользователи, в частности, знают, что такое гироскоп, акселерометр, сенсор освещенности. К сожалению, далеко не всем известно, что такое датчик Холла. И потому у них очень часто появляются вопросы.

Датчики Холла нашли применение в современных смартфонах. Именно так называют измерительные элементы, которые предоставляют возможность определить, есть ли магнитное поле, какая у него интенсивность, а также все его изменения.

Свое название датчики получили в честь ученого из Америки Эдвина Холла. Именно им в далеком 1879 году был открыт эффект, когда напряжение тока на проводнике изменялось, если его помещали в магнитное поле.

Предназначение датчика Холла в смартфоне

Суть данного эффекта заключается в следующем: если пластину под напряжением поместить в магнитное поле, то электроны в пластине станут отклоняться перпендикулярно направлению магнитного потока.

На разных сторонах пластины плотность электронов будет разная. А это приводит к тому, что и потенциалы, которые улавливает датчик Холла, будут разные.

У этого сенсора достаточно большие возможности. Однако при этом надо подчеркнуть, что все зависит от уровня реализации. Среди таких возможностей, например, измерение величины электромагнитной индукции. Причем у самых разных приборов.

Есть также возможность реализовать бесконтактное управление. Есть немало и других функций. Основанный на датчике Холла магнитометр в современных смартфонах можно встретить очень часто. Во флагманских устройствах — особенно часто.

Отметим, что только незначительная часть мобильных устройств использует все возможности датчика Холла сполна. Пространство под крышкой ограничено. Есть желание уменьшить потребление заряда аккумулятора. Нет ни большого интереса, ни острой потребности, чтобы реализовать новые функции. А в итоге сенсор используется при выполнении двух задач.

Первая задача — это цифровой компас. В нем нуждаются навигационные программы, чтобы ускоренно позиционировать и более точно определять направления движения. «Холодный» старт GPS происходит быстрее за счет магнитометра.

Вторая задача — улучшить взаимодействие устройства с магнитными чехлами и другими аксессуарами. Эта сфера использования датчика Холла чаще всего востребована теми, кто владеет смартфоном.

Датчик Холла используется и в телефонах «раскладушках», когда нужно включить или выключить экран при закрытии или открытии крышки.

Взаимодействие смартфона с магнитными чехлами

Самый простой пример того, как взаимодействует чехол с магнитом и смартфон, — это автоматическая блокировка/разблокировка экрана, когда закрываешь/открываешь чехол. Если магнит, расположенный в флипе приближается, то датчик Холла реагирует и регистрирует усиление поля, а потом блокирует дисплей. Интенсивность излучения уменьшается при открытии, и экран активизируется.

Чехлы, у которых окошко в верхней части, оставляют часть дисплея открытой. Это для того, чтобы была возможность применить отдельные функции, например, проигрыватель, часы, звонки, проигрыватель и при этом не раскрывать флип. Они тоже взаимодействуют с датчиком Холла.

Смартфон регистрирует есть или нет повышенное магнитное поле и определяет, весь экран оставлять активным или лишь его часть.

Еще одним примером аксессуара, требующего наличия датчика Холла, являются Google CardBoard — доступные очки виртуальной реальности, которые применяют на смартфон. Это тоже аксессуар, который требует, чтобы у него был датчик Холла. Ведь когда используешь девайс, телефон находится внутри. И тогда единственный метод управлять — это удаленное взаимодействие с датчиком Холла магнита, который встроен в единственную «кнопку» аксессуара.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Что такое датчик Холла в смартфоне и как он используется

Смартфоны на Windows обладают специальным датчиком Холла, и на этой странице вы узнаете, что это такое и как подобный элемент используется в современных устройствах.

Современные мобильные устройства настолько интересны, что некоторые пользователи не совсем представляют зачем в них устанавливают различные датчики и как работает та или иная функция телефона. Например, мало кто понимает какие функции выполняет в датчик Холла в смартфоне. Для чего он вообще нужен. В связи с этим нелишним будет ещё раз рассказать о подобном дополнении.

Многие уже понимают, для чего в современных телефонах используются датчики приближения или гироскопы. В нашем же случае речь идёт об определении положения гаджета, и эта функция стала осуществимой благодаря одноимённому эффекту. Встроенный датчик позволяет фиксировать присутствие магнитного поля, а также производить регистрацию его напряжённости. Но в современных устройствах измерение уровня напряжённости не используется. Производится только фиксация самого факта присутствия магнитного поля. Кроме такого дополнения в телефоне, скорее всего, будет присутствовать магнитный датчик, благодаря чему гаджет можно будет использовать в качестве полноценного компаса.

Как применяется датчик Холла в современном телефоне

Изобретение самого устройства датируется 1879 годом, а его практическое применение случилось через три четверти века. Постепенно его стали с=использовать все шире и сегодня он используется в:

  • Системах чтения магнитных носителей;
  • Бесконтактных выключателях;
  • Для измерения уровня какой-то жидкости;
  • В ракетных двигателях.

Простым пользователям гораздо интереснее, каким образом применяется датчик Холла в телефоне. В настоящее время его наличие позволяет использовать так называемый «умный чехол» для смартфона. Сам датчик позволяет определить факт открытия или закрытия такого чехла.

Когда магнитная часть отдаляется от устройства, датчик отдаёт сигнал об открытии чехла и телефон может разблокироваться. Если же происходит фиксация магнитного поля, то смартфон автоматически блокируется и на экране может отображаться совершенно другая информация. Например, в соответствии с настройками устройства, вы можете видеть только время и дату. А при вызове может демонстрироваться номер абонента и его имя из списка контактов.

У вас, к сожалению, нет возможности управлять данным элементом, однако, если это необходимо, то есть способ. Для этого вам нужно найти в нашем материале про сервисные (инженерные) коды Windows 10 Mobile специальный код, который активирует панель управления.

Но подобные функции – это только самая популярная возможность использования эффекта магнитного поля. А также имеется функция цифрового компаса, благодаря которой осуществляется более точное позиционирование устройства для координации перемещения пользователя.

Загрузка…

Пожалуйста, Оцените:

Наши РЕКОМЕНДАЦИИ

как проверить датчик холла, как он работает и для чего нужен


Датчик Холла в разных сферах производства

Попробуем разобраться, для чего нужен этот датчик Холла в автомобильном производстве. На сегодня эти устройства являются основой системы зажигания, которое находится в каждом автомобиле. Благодаря этому механизму происходит полноценный контроль над изменениями тока. Если происходит проблема в эксплуатации данного механизма, то функциональность системы зажигания также терпит неполадки. Это несет за собой негативные последствия в остальных важных аспектах автомобильных механизмов.
Для чего нужен датчик Холла в автомобиле? Это неотъемлемая его часть, благодаря своему небольшому размеру и формату прямоугольного электрического сигнала, что дает способность набирать нужную константу без скачков, набрали широкую популярность в создании автомобиля. Также он помогает в повышении мощности силового агрегата, усиливает действие всех остальных автомобильных устройств, что защищает его от аварийных ситуаций и способствует длительной эксплуатации авто.

Проверить работоспособность устройства Холла возможно своими силами. Для этого есть несколько способов. Первый, это проверка специальным тестером цифрового формата. Благодаря этому способу возможно замерять напряжение в механизме. Если напряжение будет колебаться до 3 вольт, то его можно использовать далее. Если же предел превышен, то устройство необходимо ремонтировать. Второй способ проверки — это проверка с помощью аналогичного устройства, только совершенно нового. При этом необходимо сравнить показатели обоих механизмов. Если второй вызовет у вас нарекания, тогда необходимо применить детальную проверку первым способом.

Также рассмотрим, что собой представляет датчик Холла в телефоне. Для этой сферы датчик является микросхемой, которая на выходе создает необходимый информационный сигнал. При создании телефона, разработчики используют этот механизм для контроля сигнала, что отображает это как наличие единицы или нуля. Проверить это можно на примере магнитного чехла. Когда на смартфон надевают чехол на магнитной застежке, то при его открывании, смартфон должен отреагировать и загореться. При закрывании срабатывает обратная реакция. Такие команды телефону и задает именно датчик Холла и заставляет его работать.

Убедиться, что в вашем телефоне стоит такой датчик, можно лишь внимательно прочитав описание самого телефона. А также если на мобильном рынке продаж на ваш телефон существует огромный выбор умных чехлов, которыми он руководит, тогда можете не сомневаться в наличии данного устройства в вашем смартфоне.

На сегодняшний день существует две разновидности устройства:

  • Цифровые
  • Аналоговые

Цель аналогового датчика — это изменение и переработка индукции в напряжении. Величина, которую он показывает, зависит от установленной дистанции, а также силы и полярности поля. Цифровой механизм определяет наличие поля. Они делятся на биполярные и униполярные. Принцип работы биполярного датчика является реагирование на изменение полярности поля, где одна полярность включает устройство, другая же выключает. Работа униполярного устройства происходит при уменьшении индукции поля.

Как работает датчик Холла и как он устроен?

Проводя свои исследования, Холл установил: когда пластина в магнитном поле и под напряжением, в ней происходит отклонение электронов. Поток магнитных частиц движется перпендикулярно этому движению. Направление отклонения электронов напрямую зависит от полярности магнитного поля. Значит, на различных сторонах металлической пластинки плотность электронов будет разной.

Холл взял металлический прямоугольник и, расположив его в магнитном поле, подал ток на узкие грани проводника, а напряжение зафиксировал на широких гранях.

Технологии совершенствовались, и этот принцип лег в основу прибора, который сейчас принято называть по имени человека, открывшего это явление.

Схема работы датчика следующая:

  • Сквозь пластины устройства проходит электричество.
  • В магнитном поле образуется разница потенциалов. Затем она постепенно выравнивается с помощью постоянного магнита. Сила тока на выходе при этом может различаться.
  • Когда на вход прибора поступает сигнал, формируется постоянный импульс, имеющий прямоугольную форму. Этот импульс видим только на осциллографе.

Есть аналоговые и цифровые измерители. Аналоговый трансформирует магнитную индуктивность в электричество. Сила тока находится в зависимости от величины магнитного поля.

Эту конструкцию не используют в новых машинах — она устарела. Индукция цифрового прибора достигается, только если значение магнитного поля переходится через определенный рубеж. Устройство не активируется при слишком слабом магнитном поле. В старых авто датчик применяли для подачи искры на свечи.

Устройство датчика Холла таково:

  • магнитная основа;
  • роторная лопатка;
  • провод для прохождения магнитного потока;
  • корпус из пластика;
  • электронная микросхема;
  • контактная система.

Всего в контроллере 3 контакта. Первый подводится к массе. Второй нужен для подключения напряжения, сила которого составляет 6 вольт. С третьего контакта происходит передача импульсов на коммутатор.

Основные сведения

Начнем с базовой информации: где находится датчик Холла, что это такое, для чего он нужен. «Голый» датчик — это небольшой измеритель (сенсор, обнаружитель), почти всегда черный (цвет зависит от предпочтений производителя), размером в несколько миллиметров. Автомобильные изделия имеют сравнительно большой пластиковый защитный короб, «фишку» с кабелем с разъемом подключения.

Сенсор фаз осуществляет мониторинг магнитных полей, их параметров (напряженности), при этом выдает заданные алгоритмы работы (смыкание контактов и пр.).

Рассматриваемым сенсорам присвоили наименование от фамилии ученого Холла, открывшего, что разность потенциалов (холловского напряжения) возникает, если в поле помещают объекты с постоянными токами.

Автомобильный сенсор тока находится в трамблере — узле для подключения свечей, он скрыт пластиковой фишкой с тремя проводами и разъемом под них. На иных приборах он может размещаться где угодно. Обычно на печатных платах — это крошечная черная коробочка стандартно на 3, реже — на 4 ножках. Линейные Hall sensor напоминают микросхему. Изделие также определяют по маркировке, обозначения есть в справочниках радиодеталей, (распространенные S41, 41F, U18, 3144, 44E, 49E).

При токовом течении в одном направлении электроны отклоняются в проводниках, размещенных перпендикулярно к полю. Участки их имеют неравномерную плотность частиц, это и есть разность потенциалов, фиксируемая датчиком Холла. Становится возможным анализ напряжения под прямым углом к току.

Есть также Hall effect sensor упрощенный как, например, в смартфонах: только с функцией подтверждения наличия магнитных явлений, напряженность не анализируется. На базе узла, включающего датчик и магнитомер, телефон снабжается опцией компаса.

Как функционирует

Принцип работы, использования датчика Холла:

  • Электроны при прохождении тока движутся по сенсору прямолинейно.
  • При воздействии поля частицы с зарядом отклоняются силой Лоренца по изогнутой траектории.
  • Отрицательно заряженные элементы, они же электроны, притягиваются на 1 сторону Hall sensor, а плюсовые (дырки) — к иной.
  • Описанное накопление по разным сегментам создает разное напряжение, это и есть разность потенциалов. Пропорциональность возникшего напряжения к электротоку и напряженности поля прямая. Эти окончательные явления и отслеживаются сенсором, принцип используется для определения положения подконтрольных им обслуживаемых объектов.

Где применяются

Датчики фаз начали устанавливаться в конструкции около 75 лет после их изобретения, когда появились доступные технологии создания полупроводниковых пленочных материалов.

Характерные области применение датчиков Холла:

  • первая область, где началось использование — машиностроение, для замеров углов распредвалов, коленвалов, фиксации искрения на узлах зажигания;
  • переключатели (бесконтактного типа), анализаторы уровня веществ, скорости вращения лопастей, приспособления дистанционного обнаружения токов;
  • сканирование магнитных обозначений;
  • как замена герконам (автоматические выключатели, смыкающие контакты посредством магнита). В этой сфере описываемые устройства наиболее распространенные из-за многочисленности приборов: микроэлектроника, техника от наушников до манипуляторов, клавиатур, в лифтах, охранном оснащении (двери, запорные элементы).

В смартфоне

Датчик холла в смартфоне применяются для таких целей:

  • как часть компаса, магнитомера;
  • для мониторинга закрытия/открытия чехла с магнитной защелкой отслеживанием ослабления/повышения поля;

Опишем, для чего нужен датчик холла в смартфоне на обложке. При отдалении магнита с обнаружителя идет импульс на активацию табло, когда ближе — на отключение. Разновидность таких чехлов — отдельный вид изделия, именуемый обычно Smart Case. Есть и дополнительные функции, принцип действия их такой: если применяется обложка без окошек около дисплея, то посредством обнаружителя отключается экран, когда он закрыт, при открытии — автоматическая активация. При наличии окошек инициируется переключение содержимого на табло. На видимой области — часы и пр., на всем дисплее — вся информация.

Не все смартфоны имею описанное усовершенствование, а также не всегда производители указывают его в перечне опций, поэтому нужно уточнять этот параметр. Но если в рекомендуемых аксессуарах есть отметка о таковых подходящих из категории Smart Case, то данная опция присутствует.

Магнитные датчики

Основное преимущество использования датчиков магнитного поля, заключается в их бесконтактной работе. Они бывают аналоговыми и дискретными. Первый тип считается классическим. В его основе лежит принцип, что чем сильнее будет магнитное поле, тем больше будет величина напряжения. В современных приборах и устройствах такой тип уже практически не используется из-за значительных размеров. Цифровой же датчик построен на режиме работы «ключ» и имеет два устойчивых положения. Если сила индукции недостаточна он не срабатывает.

Разделяются дискретные элементы Холла на два типа:

  • униполярные — срабатывание которых зависит от полюса магнитного поля;
  • биполярные — переключения состояния датчика происходит при изменении магнитного полюса;
  • омниполярные — реагируют на действие магнитной индукции любого направления.

Конструктивно датчик представляет собой электронный прибор с тремя выводами. Он может выпускаться как в стандартном исполнении DIP, DFN или SOT, так и в герметичном: например, 1GT101DC (герметичный), A1391SEHLT-T (DNF6), SS39ET (SOT), 2SS52M (DIP).

Характеристики устройства

Выпускаемые датчики, использующие явление Холла, как и любые электронные радиокомпоненты характеризуются своими параметрами. Главным из них является тип прибора и напряжение питания. Но, кроме этого, выделяют следующие технические характеристики:

  1. Величина измеряемой индукции. Измеряется она в гауссах или миллитеслах.
  2. Чувствительность — определяется значением магнитного потока, на который реагирует датчик, единица измерения мВ/Гс или мВ/мТл.
  3. Нулевое напряжение магнитного поля — значение разности потенциалов, соответствующее отсутствию магнитного поля.
  4. Дрейф нуля — изменение напряжения, зависящее от температуры. Указывается в процентном отклонении от температуры 25 °C.
  5. Дрейф чувствительности — изменение чувствительности, вызванное изменением температуры.
  6. Полоса пропускания — уровень снижения чувствительности с шагом в 3 дБ.
  7. Индукция включения и выключения — это значение напряжённости поля, при котором датчик устойчиво срабатывает.
  8. Гистерезис — разность между индукциями включения и выключения;
  9. Время срабатывания — характеризуется промежутком времени перехода из одного устойчивого состояния в другое.

Изготовление приборов

Материал, из которого выполняется элемент Холла, должен обладать большой подвижностью носителей зарядов. Для получения наибольшего значения напряжения вещество не должно иметь высокую электропроводностью. Поэтому при производстве устройств используется: селенид, теллурид ртути, антимонид индия. Тонкопленочные датчики получаются методом испарения вещества и осаждения его на подложку. В качестве её служит слюда или керамика.

Изготавливают датчики также из полупроводников — германия и кремния. Их легируют мышьяком или фосфорной сурьмой. Такие устройства обладают низкой зависимостью от изменения температуры, а величина образуемой на них ЭДС может достигать одного вольта.

Типовой процесс производства пластинчатого датчика Холла состоит из следующих операций:

  • обрезка пластины нужного размера;
  • шлифовка поверхности;
  • формирование с помощью пайки либо сварки симметричных выводов;
  • герметизация.

Одним из главных преимуществ датчиков, выполненных на этом эффекте, является электрическая изоляция (гальваническая развязка) делающие их применение удобным и безопасным.

Аналоговые/пропорциональные датчики для повышения стабильности и точности

Аналоговые измерительные приложения позволяют конечному пользователю мгновенно получать обратную связь о положении магнита. Аналоговый датчик Холла обладает высокоточным выходным сигналом с высоким разрешением.

Ранее аналоговые датчики Холла измеряли у магнитов плотность потока и в значительной степени зависели от внешней температуры. Так как в последние годы аналоговые технологии эффекта Холла развивались, теперь, вместо традиционной амплитуды поля, микросхема с датчиком Холла теперь измеряет угол поля, делая его намного менее чувствительным к изменениям температуры. Это улучшение позволяет датчику обеспечивать более стабильный аналоговый выходной сигнал в широком диапазоне температур.

Рассмотрим два типа датчиков Холла, которые могут быть выбраны для аналоговых измерительных схем:

Поворотный датчик Холла: преимущества и применение

Этот полупроводниковый датчик изменяет выходное напряжение при изменении магнитного поля. Он сочетает в себе измерительный элемента на основе эффекта Холла и электрическую схему, обеспечивающую аналоговый выходной сигнал, который соответствует изменению вращающегося магнитного поля без использования каких-либо движущихся частей. Этот датчик предлагает два варианта выходного сигнала: аналоговый или широтно-импульсно-модулированный (ШИМ). Устройство программируется таким образом, чтобы инженер мог связать определенное выходное напряжение или ШИМ сигнал с точной степенью поворота. При повороте до 360° доступны несколько точек программирования. Каждая программируемая точка представляет собой напряжение или ШИМ сигнал, который соответствует заданному углу магнитного поля. Это приводит к получению выходного сигнала, пропорционального углу поворота.

В отличие от механического и резистивно-плёночного поворотных устройств поворотный датчик Холла не испытывает механического износа или изменения значений сопротивления. Кроме того, он очень стабилен при нормальных рабочих температурах вплоть до +105°C. Результаты измерения угла поворота в диапазоне 0°–360° точно калибруются в соответствующем диапазоне выходного постоянного напряжения 0,5В–4,5В или коэффициента заполнения ШИМ сигнала 10–90%.

Поворотные датчики Холла становятся очень популярными для замены механических резистивно-пленочных потенциометров. Они используются в автомобильных и внедорожных приложениях, таких как определение положения клапана EGR в двигателях. Эти датчики также могут использоваться для определения положения поворотных ручек в приборах и бытовой технике.


Рисунок 3 – Поворотный датчик Холла, используемый в поворотной ручке стиральной машины

Линейный датчик Холла: преимущества и применение

Линейные датчики Холла похожи на поворотные датчики Холла, за исключением того, что они измеряют не угловое, а линейное движение магнитного поля. Датчик Холла программируется для выдачи заданного напряжения, пропорционального заданному расстоянию. Типы выходного сигнала у него такие же, как и у поворотного датчика Холла. Датчик измеряет линейное перемещение и относительный угол потока магнитного привода на расстоянии до 30 мм на каждую микросхему с датчиком Холла. Это дает в результате выходной сигнал, точно пропорциональный перемещению датчика.

Перед программированием выходных напряжений или значений ШИМ-сигнала, соответствующих относительному значению магнитного поля от магнита на приводе, датчик и привод могут быть помещены на место окончательного монтажа в устройстве, чтобы в процессе программирования учесть все магнитные воздействия от близлежащего окружения. Это позволит инженеру отрегулировать выходной сигнал датчика, поскольку в процессе программирования будут учтены любые шунтирующие, механические воздействия и воздействия посторонних магнитных полей.

Линейные датчики Холла часто используются в качестве датчиков контроля уровня жидкости. В этом применении датчик определяет положение движущегося поплавка с прикрепленным магнитом. Линейные датчики также полезны в более сложных конструкциях, таких как автомобильная коробка передач.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через проводящий брусок в слабом магнитном поле с индукцией B{\displaystyle B} течёт электрический ток с плотностью j{\displaystyle j} под действием напряжённости E{\displaystyle E}. Магнитное поле будет отклонять носители заряда к одной из граней бруса от их движения вдоль или против электрического поля. При этом критерием малости будет служить условие, что при этом носители заряда не начнут двигаться по циклоиде.

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1{\displaystyle E_{1}} не скомпенсирует силу Лоренца:

eE1=evB⇒E1=vB.{\displaystyle eE_{1}=evB\Rightarrow E_{1}=vB.} где e{\displaystyle e} — электрический заряд электрона.

Скорость электронов v{\displaystyle v} можно выразить через плотность тока j{\displaystyle j}:

j=nev⇒v=jne,{\displaystyle j=nev\Rightarrow v={\frac {j}{ne}},} где n{\displaystyle n} — концентрация носителей заряда. Тогда E1=1nejB.{\displaystyle E_{1}={\frac {1}{ne}}jB.}

Коэффициент RH=1ne{\displaystyle R_{H}={\frac {1}{ne}}} пропорциональности между E1{\displaystyle E_{1}} и jB{\displaystyle jB} называется коэффициентом

(или
константой
)
Холла
. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определить знак их заряда для большого числа металлов и полупроводников.

Несмотря на то, что носителями заряда в металлах являются электроны, имеющие отрицательный заряд, для некоторых металлов — например, таких, как свинец, цинк, железо, кобальт, вольфрам в достаточно сильном магнитном поле наблюдается положительный знак константы Холла RH{\displaystyle R_{H}}, что объясняется в полуклассической и квантовой теориях твёрдого тела.

Виды датчиков

С развитием науки технология стала использоваться во многих устройствах. Этому способствовало и то, что всего существует несколько видов датчиков:

  1. Цифровые. Предназначены для обнаружения магнитного поля. При достаточно высокой индукции, устройство срабатывает. Это определенная логическая команда, которая определяется как «один» такой сигнал означает – поле присутствует. При низкой чувствительности, слабом магнитном поле, или полном его отсутствии, срабатывает сигнал «ноль».
  2. Униполярные. Особый вид, который включается и выключается одним и тем же магнитным полем. Включен прибор или же выключен, зависит от интенсивности магнитного поля.
  3. Биполярные. Сложный тип датчика Холла. Его работа основана на взаимодействии с обоими полюсами. К примеру, он включается только южной стороной магнита. Если включение произошло, то этой стороной уже нельзя повлиять. Не поможет изменение плотности магнитных волн или расстояния меду магнитом и проводником. Чтобы отключить его, нужно развернуть магнит на противоположный полюс и эту сторону поднести к прибору.

Причины и диагностика поломки датчиков положения

Причиной поломки датчиков Холла могут стать:

  • значительный перегрев электромотора – выше 150–180 °С;
  • механические повреждения;
  • скачки напряжения;
  • попадание воды внутрь корпуса электродвигателя или ручки газа.

Явным признаком поломки датчиков Холла считается подергивание МК при старте во время поворота ручки газа. Для диагностики такой неисправности достаточно вольтметра. Также для проверки работоспособности мотор-колеса, контроллера или ручки газа удобно воспользоваться диагностирующим тестером. Он позволяет продиагностировать датчики положения и обмотки, выявить имеющиеся дефекты, проверить фазовый угол и корректность переключения фаз.

Область применения

Широкое распространение устройств Холла началось с массового производства полупроводниковых пленок. С развитием микроэлектроники приборы приняли миниатюрные размеры, в их корпусах стоит магнит, чувствительный элемент и микросхема. Используются они в машиностроении, авиации, в конструкциях серводвигателей.

В автомобиле прибор применяется для контроля положения различных узлов и механизмов, в том числе распредвала и коленвала. Он работает в качестве замыкателя и размыкателя. На стационарно закрепленный преобразователь влияет магнит, расположенный и вращающийся в трамблере.

Под влиянием магнитного поля прибор подает импульс, вызывающий искру зажигания. На фото можно видеть, как он расположен в трамблере.

Размещение прибора в трамблере.

Как большие электрические нагрузки можно контролировать с помощью датчиков Холла

Мы уже знаем, что выходная мощность датчика Холла очень мала (от 10 до 20 мА). Поэтому он не может напрямую контролировать большие электрические нагрузки. Тем не менее, мы можем контролировать большие электрические нагрузки с помощью датчиков Холла, добавив NPN-транзистор с открытым коллектором (сток тока) к выходу.

Транзистор NPN (приемник тока) функционирует в насыщенном состоянии в качестве переключателя приемника. Он замыкает выходной контакт заземлением, когда плотность потока превышает предварительно установленное значение «ВКЛ».

Выходной переключающий транзистор может быть в разных конфигурациях, таких как транзистор с открытым эмиттером, транзистор с открытым коллектором или оба. Вот так он обеспечивает двухтактный выход, который позволяет ему потреблять достаточный ток для непосредственного управления большими нагрузками.

Малопотребляющие датчики Холла от Honeywell

В ассортименте одного из старейших производителей датчиков Холла – компании Honeywell – также присутствуют две модели малопотребляющих датчиков положения, отличающихся лишь чувствительностью.

Структурная схема (рисунок 11), технические характеристики (таблица 3) и принцип работы микросхем SM351 и SM353 во многом аналогичны рассмотренным выше микросхемам DRV5032 производства компании Texas Instruments. Для уменьшения энергопотребления питание на аналоговые узлы подается только во время измерений, продолжительность которых составляет 15 мкс. Коммутация питания осуществляется с помощью транзисторного ключа, управляемого таймером, содержащим тактовый генератор, счетчик, дешифратор и другие необходимые компоненты. Средняя частота измерений напряженности магнитного поля равна 10 Гц. При напряжении питания 1,8 В такой режим работы при типовом значении тока в режиме измерений около 1 мА позволяет уменьшить средний ток микросхемы до уровня, не превышающего 0,4 мкА.

Рис. 11. Структурная схема датчиков SM351 и SM353

Микросхемы SM351 и SM353 нечувствительны к полярности внешнего магнитного поля и имеют двухтактные выходы, позволяющие подключать их к микроконтроллеру без использования внешних подтягивающих резисторов. Оба прибора выпускаются в компактных корпусах SOT-23 и могут работать в широком диапазоне питающих напряжений (1,65…5,5 В) и температур (-40…85°С), что позволяет использовать их в автомобильной и промышленной электронике совместно с большинством наиболее популярных микроконтроллеров.

Таблица 3. Технические характеристики датчиков Холла производства Honeywell при напряжении питания 1,8 В

ПараметрыНаименование
SM351SM353
Тип выходаДвухтактный
Напряжение питания, В1,65…5,5
Длительность активного режима, тип., мкс15
Рабочая температура, °С-40…85
КорпусSOT-23
Частота опроса, тип., Гц10
Чувствительность, мТл0,71,4
Максимальный ток в активном режиме, тип., мА10,8
Средний потребляемый ток, мкА0,360,31

В отличие от изделий Texas Instruments, датчикам Honeywell необходима другая ориентация магнитного поля. Для корректной работы внешние магниты должны быть ориентированы полюсами к торцевой поверхности микросхем (рисунок 12), в то время как для датчиков Texas Instruments такое расположение магнитов попадает в «слепую» зону.

Рис. 12. Ориентация магнитного поля для датчиков SM351 и SM353

Датчик Холла в системе зажигания

В современных бесконтактных системах зажигания вместо механического размыкателя применяют датчик Холла. Сам сенсор установлен на корпусе трамблера и имеет специальную прорезь, с одной стороны которой установлен постоянный магнит, с другой – микросхема с чувствительным элементом. На оси прерывателя закреплена металлическая коронка с прямоугольными зубцами и прорезями (в соответствии с количеством цилиндров двигателя). Сам принцип работы достаточно прост. При вращении ротора распределителя металлические зубцы коронки проходят через зазор датчика Холла.

В результате:

  • Когда щель между постоянным магнитом и чипом свободна (это происходит в момент прохождения прорези вращающейся коронки через зазор датчика), на выходе сенсора напряжение отсутствует (либо оно минимально). ЭБУ «воспринимает» такой сигнал как логический ноль.
  • И наоборот, когда металлическая пластина входит в зазор датчика и перекрывает магнитный поток, на выходе устройства появляется значительное напряжение, которое поступает на ЭБУ. Блок «включает» в работу высоковольтную катушку и в нужном цилиндре происходит воспламенение воздушно-топливной смеси.

Для информации! Существуют датчики (в зависимости от марки автомобиля и прошивки его «мозгов»), алгоритм работы которых выглядит с точностью «до наоборот» (по сравнению с вышеописанным).

Ремонт и замена своими руками

При повреждении элементов конструкции ремонт датчика невозможен. Владельцу автомобиля необходимо поменять деталь на оригинальный сенсор или найти по справочникам либо каталогам аналог. Алгоритм установки нового датчика зависит от конструктивных особенностей автомобиля. Для выполнения работ нужен набор слесарного инструмента (гаечные ключи и отвертки). Процедура занимает 10–20 минут.

Чтобы заменить неисправный датчик положения распределительного вала, необходимо (на примере Lada Priora с 16-клапанным мотором):

  1. Найти точку установки сенсора по электрической схеме или жгуту проводки, подведенному к передней крышке двигателя рядом со шкивом коленчатого вала.
  2. Снять колодку проводки и отвернуть 2 болта, а затем аккуратно вынуть датчик из посадочного гнезда.
  3. Осмотреть изделие. Если на корпусе имеются следы механического воздействия, снять пластиковый кожух и проверить состояние газораспределительного механизма. В противном случае установить новый сенсор, завернуть крепежные болты и подключить сигнальный кабель. При монтаже убедиться в наличии резинового уплотнителя.

Ряд производителей автомобилей рекомендует проводить замену датчика Холла через 100–150 тыс. км пробега.

Подобные требования обусловлены жесткими условиями эксплуатации (узлы работают в условиях перепадов температуры и подвергаются вибрационным нагрузкам). Циклы нагрева и охлаждения негативно влияют на полупроводники и способны разрушить пластиковый корпус. Вода или конденсат проникает в трещины и ускоряет выход датчика из строя.


Чтобы заменить датчик, нужно найти точку установки сенсора.

Для замены датчика в трамблере следует:

  1. Отстегнуть защелки и снять крышку.
  2. Установить метки на шкиве коленчатого вала и газораспределительного механизма.
  3. Отвернуть болты крепления и снять распределитель зажигания для дальнейшей разборки.
  4. Демонтировать неисправный датчик и произвести осмотр и обслуживание элементов конструкции.
  5. Установить новый сенсор и произвести сборку в обратной последовательности.
  6. Проверить работоспособность двигателя и произвести регулировку зажигания (при необходимости).

Датчик Холла

Датчик дождя, датчик уровня жидкости, датчик температуры – он же термометр. Вроде бы все ясно: датчик дождя показывает наличие дождя, датчик уровня жидкости показывает, как ни странно, уровень жидкости; термометр – от греч. – тепло и измерять, показывает температуру. Но вот что за странное название: датчик Холла?

С чего все начиналось

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странную вещь… Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я отметил с гранями ABCD.

Так вот, когда он пропускал постоянный ток через грани D и B, поднес перпендикулярно пластинке постоянный магнит и знаете что обнаружил? Разность потенциалов на гранях А и C! Или проще сказать, напряжение. Этот эффект и назвали в честь этого ученого.

Как только он сделали это открытие, вскоре стали делать радиоэлементы на этом эффекте. Чтобы не заморачиваться с названием, назвали в честь того, кто открыл этот эффект – в честь Холла. Поэтому радиоэлементы, основанные на эффекте Холла, называют датчиками Холла.

Линейные датчики Холла

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку. Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого проводоа, например, токовые клещи

а также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах называют линейными, так как напряжение на датчике Холла прямо пропорционально измеряемым параметрам магнитного поля.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер.

Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью.

Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Разработчики на этом не остановились. Как только наступила эра цифровой элек троники в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Выглядит все это примерно вот так:

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные. Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. То есть подносим например южный полюс магнита, датчик сработал. На северный магнитный полюс ему наплевать.

Биполярные. Здесь уже интереснее. Подносим магнит одним полюсом – датчик сработал и продолжает работать даже тогда, когда мы убираем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Омниполярные. Этим датчикам по барабану на какой полюс включаться и выключаться. Пусть будет хоть южный или северный.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.


Схема подключения мультиметра для проверки ДХ
На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.


Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.


Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Принцип работы

Рассмотрим, как устроен импульсный преобразователь. Он выдает сигналы, если изменяется разность потенциалов, которая возникает в проводнике, когда его пересекает магнитное поле. Создается магнитное поле постоянным магнитом, который находится в приборе.

Магнитное поле меняется, если репер (металлический зуб) замыкает специальный разъем. Репер может находиться либо на зубчатом колесе распредвала, либо на задающем диске, расположенном на валу. На схеме показано устройство преобразователя.

Схема устройства прибора.

Если двигатель оборудован системой изменения газораспределителых фаз, то устройство устанавливается на выпускной и впускной клапан распредвала.

Схема работы устройстваВ дизеле устройство Холла помогает определить положение распредвала относительно коленвала. Таким образом обеспечивается устойчивая работа силового агрегата во всех режимах. Для реализации этого процесса изменена конструкция задающего диска распредвала. Он имеет репер для каждого цилиндра.

Знание устройства дает возможность понять, из-за чего могут возникнуть неисправности, как выполнить ремонт либо замену своими руками.

Преимущества и недостатки

К преимуществам ДХ можно отнести:

  1. Многофункциональность. Контроллеры Холла, как описано выше, могут играть роль десятков видов датчиков.
  2. Надежность. Не подвержены износу т.к. не имеют движущихся частей. На их работе не влияет ни влага, ни пыль (вибрация в меньшей степени).
  3. Простота. Практически не требует обслуживания.

Среди недостатков ДХ выделяют:

  1. Низкий радиус действия. Обычно ДХ не работает на расстоянии больше 10 см. В противном случае придется использовать очень сильный магнит.
  2. Сложно обеспечить стабильность измерений. Из-за постоянно меняющегося магнитного поля точность измерений ДХ всегда будет немного колебаться.

Главный недостаток ДХ – температурная нестабильность.

Виды устройств

Основной задачей этого прибора считается определение напряженности магнитного потока. Практически это сенсор определения значений магнитного поля. Существуют датчики двух видов:

  • цифровые;
  • аналоговые.

Униполярные приборы включаются при появлении любой полярности и отключаются по мере ее уменьшения. Цифровые сенсоры измеряют индукцию и появление соответствующего напряжения, то есть наличие или отсутствие магнитного поля.

Прибор показывает единицу, когда индукция поля достигает пороговое значение. До этого момента сенсор будет показывать ноль. Такой датчик не сможет определить наличие магнитного поля со слабой индукцией. Кроме того, на точность показаний будет влиять дистанция до измеряемого объекта.

Особенности малопотребляющих дискретных датчиков Холла

Различают линейные и дискретные датчики Холла (рисунок 1). Выходные сигналы линейных датчиков пропорциональны величине магнитной индукции. Основная сфера применения подобных устройств – измерители напряженности магнитного поля, датчики постоянных и переменных токов (рисунок 2), бесконтактные потенциометры, датчики угла поворота и прочие приложения, работающие с непрерывными сигналами. Кроме усилителя и схем температурной компенсации микросхемы, в зависимости от специализации, могут содержать множество других узлов, например, АЦП, компараторы тревожных сигналов для активизации центрального микроконтроллера, контроллеры популярных интерфейсов передачи данных, (USART, I2C, SPI и других), а также энергонезависимую память для хранения настроек.

Рис. 1. Структурные схемы датчиков Холла

Рис. 2. Датчик Холла для измерения тока

Когда абсолютное значение индукции магнитного поля не имеет значения, а важно определить лишь факт наличия или отсутствия магнитного поля – используют датчики Холла с дискретным выходом. В эти микросхемы обычно интегрируются один или несколько компараторов с гистерезисом, сравнивающих напряжение на выходе дифференциального усилителя с пороговыми уровнями. Областью применения дискретных датчиков Холла является широкий спектр автоматизированных приложений: датчики открытия дверей, частотомеры, синхронизаторы, автомобильные системы зажигания, контроллеры подвижных элементов (клапанов, задвижек, крышек и прочего), охранные системы, устройства управления электродвигателями и многие другие.

Классическим примером использования дискретных датчиков Холла являются электродвигатели, используемые в компьютерном оборудовании (рисунок 3). Размещенный на плате двигателя датчик Холла измеряет напряженность магнитного поля, создаваемого постоянным магнитом ротора, формируя импульсный сигнал с логическими уровнями, частота которого пропорциональна частоте вращения, что позволяет оценить как исправность, так и производительность вентилятора.

Рис. 3. Датчик Холла в компьютерном вентиляторе

Относительно новой областью применения дискретных датчиков Холла являются устройства дистанционного мониторинга, в которых они постепенно вытесняют традиционно используемые в данных приложениях герметичные электромеханические контакты (герконы). Например, использование датчика Холла совместно с трехосевым акселерометром в беспроводном дверном датчике DMS-100, выпускаемом компанией Pandora (рисунок 4), позволяет распознать удар, поворот и состояние (открыто/закрыто) дверей, люков, крышек кофров, багажников, прицепов. Поскольку датчик DMS-100 использует беспроводной интерфейс передачи данных и питается от аккумулятора, его можно легко и быстро разместить в труднодоступных местах.

Рис. 4. Беспроводной датчик двери Pandora DMS-100

Основными преимуществами датчиков Холла по сравнению с герконами являются высокая надежность, компактность и повышенная чувствительность. Кроме этого, измерительный элемент может определять не только величину, но и полярность магнитного поля, в том числе – по нескольким координатам. Все эти преимущества позволяют позиционировать датчики Холла в качестве перспективной элементной базы.

В случае, когда непрерывный мониторинг объекта не требуется (например, для систем безопасности), энергопотребление датчика Холла может быть снижено за счет перевода в прерывистый режим работы. Например, при контроле двери или окна нет необходимости постоянно определять их состояние, достаточно это делать несколько раз в секунду, ведь скорость их перемещения относительно невелика. Благодаря тому, что измерительный элемент датчика Холла является практически безынерционным, а современная элементная база отличается высоким быстродействием, для проведения измерений уровня магнитного поля без ущерба для точности достаточно всего нескольких десятков микросекунд. Таким образом, если микросхема датчика большую часть времени будет находиться в спящем режиме, при котором потребляемый ток снижается до уровня нескольких микроампер, то среднее значение тока, потребляемого датчиком, может быть уменьшено на несколько порядков.

Например, пусть для проведения измерений достаточно 100 мкс и тока 5 мА. Если проводить измерения 10 раз в секунду с интервалом 100 мс, то при токе потребления в спящем режиме 5 мкА средний потребляемый ток Iср будет рассчитан по формуле 1 (рисунок 5): $$I_{ср}=\frac{T_{1}}{T}\times I_{1}+\frac{T_{2}}{T}\times I_{2},\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

где T1 = (t1 – 0) – продолжительность этапа измерения, T2 = (T – t1) – продолжительность спящего режима, то есть (0,1/100)∙5000 + (99,9/100)∙5 ≈ 10 мкА.

Рис. 5. Сравнение энергопотребления датчиков Холла при различных режимах работы (в условном масштабе)

Это в 500 раз меньше тока 5 мА, который бы потребляла микросхема, выполняя непрерывные измерения. Таким образом, использование прерывистого режима является эффективным средством уменьшения энергопотребления дискретных датчиков Холла без ущерба для их функциональности, что делает их идеальными для широкого круга компактных приложений с батарейным питанием.

Открытие эффекта Холла

Будущий физик Эдвин Герберт Холл родился в американском городе Горем в 1855 году. Получив начальное образование, он в 1875 году поступил в университет, где и ставил свои первые эксперименты. Так, изучая труды Максвелла об электричестве и магнетизме, Холл заинтересовался двумя фактами.

Первый заключался в том, что силы, возникающие в проводнике, расположенном поперечно линиям магнитной индукции, прикладываются непосредственно к веществу. Второй же сообщал, что значение этих сил зависит от скорости движения зарядов. В 1879 году вышла статья учёного Эдмунда Холла, доказывающая факт, что магнитное поле действует с одинаковым усилием как на подвешенный, так и зафиксированный объект.

Анализируя, какая сила может управлять движением заряженных частиц, он пришёл к выводу, что это может быть только напряжение. Для первого опыта физик использовал согнутую в спираль проволоку зажатую между диэлектриков. Эту конструкцию он поместил между двумя магнитами и запитал её от химического элемента тока. В качестве регистратора использовался мост Витстона с гальванометром Кельвина. В совокупности было проведено около тринадцати экспериментов и более четырёхсот измерений с разными условиями. Результатами экспериментов стало утверждение, что магнитный поток может изменять сопротивление материала.

По совету профессора Роуланда было выработано направление нового эксперимента, заключающее в следующем:

  1. К проводящей пластине подводился электрический ток.
  2. Гальванометр подключался к краям проводника.
  3. Включался электромагнит так, чтобы линии напряжённости поля лежали перпендикулярно плоскости пластины.

Предполагалось обнаружить условия для изменения протекания тока. Но опыт не получался, пока в качестве пластины не попробовали использовать тонкий лист из золота. Поставленный новый опыт оказался удачным. Гальванометр чётко зафиксировал появившееся напряжение.

Но как только на пластину воздействует магнитное поле, линии индукции которой перпендикулярны направлению тока, заряд перераспределяется к краям, и возникает разность потенциалов. В этом и заключается эффект Холла, на базе которого были после построены одноимённые датчики.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

В автомобилях

На транспорт датчики Холла стали ставить с 70–80 годов прошлого столетия, когда начали внедрять электрозажигание вместо контактного. Принцип функционирования: вал мотора вращается с прохождением его крыльчатки по корпусным прорезям, что фиксирует обнаружитель, посылающий команду коммутатору, который и отпирает транзистор, подающий напряжение на элемент зажигания с обмоткой. Последний создает высокий вольтаж для свечи.

Конструкция

Коробочка, «фишка» с тремя контактами, три жилы и разъем подключения – это классическое устройство автомобильных Hall effect sensor. На разных моделях отличаются лишь мелочи. Такую конструкцию, учитывая нюансы обслуживаемых объектов, можно рассматривать как общий образец.

Датчик холла, устройство, схема:

  • «масса» (автомобильный корпус), это «–» или рабочий ноль;
  • «+», работающие исправные изделия имеют там около 6 В;
  • контакт для транспортировки импульса коммутатору.

Есть такие достоинства датчиков тока для зажиганий электронного типа:

  • нет постоянно подгорающего объемного контактного узла;
  • на свече выше 30 кВ против 15 кВ, что намного лучше;
  • сенсоры ставят на тормозные, антиблокировочные системы, тахометры, поэтому есть немаловажные дополнительные плюсы: повышается производительность ДВС, ускоряются и работают эффективнее все системы машины. Как следствие, возрастает удобство эксплуатации, безопасность.

Описание схемы сигнализации на датчике Холла

Ниже приводится принципиальная схема охранной сигнализации построенной с применением отечественного датчика Холла ДХК-0.5А.

Поскольку напряжение на выходе самого датчика не велико, то его следует повысить при помощи операционного усилителя с большим коэффициентом усиления. В качестве усилителя применен один из двух операционных усилителей LM358 (DA2.1), второй (DA2.2) использован в качестве компаратора.

Опорное напряжение, сформированное элементами VD2, R7, подается на вывод 5 DA2.2 усилителя LM358. Подстроечным резистором осуществляется регулировка чувствительности датчика охранной сигнализации. В момент приближения магнита к датчику Холла на выходе 7 ОУ DA2.2 появляется логический уровень равный 9 В, если же отвести магнит от датчика, то на том же выходе напряжение будет равно нулю.

Для формирования задержки срабатывания сигнализации в момент ее включения построен таймер на логических элементах DD1,1 и DD1,2 (И-НЕ)

. Параметры таймера устанавливаются путем подбора элементов C3, R2, R3, R5 и при указанных на схеме значениях время работы таймера составляет примерно 2 минуты. За это время конденсатор C3 заряжается через сопротивление R5 до уровня лог.1, в результате чего на выходе DD1.1 образуется лог.0 которая инвертируется в лог.1 элементом DD1.2.

При отсутствии магнита вблизи датчика холла, на выводе 9 элемента DD1.3 и следовательно на выходе 11 DD1.4 уровень логического нуля, система находится в режиме охраны.

При срабатывании охранной сигнализации (приближении магнита к датчику Холла) на выводе 7 DA2. 2 образуется высокий логический уровень, который приводит к появлению лог.1 на выходе 11 DD1.4. Диод VD4 не позволяет отключить срабатывание охранной сигнализации при удалении магнита от датчика Холла. Сигнал тревоги включается не сразу, а через определенный промежуток времени, который необходим для отключения сигнализации хозяином.

Данный временной интервал задержки задается элементами C4, R9 (при тех номиналах, которые указаны на схеме задержка составляет около 20 сек). Когда время задержки включения сигнала тревоги проходит, на затвор полевого транзистора поступает лог.1 , в результате чего через реле включается сирена, в качестве которой может выступать сирена от автомобильной сигнализации.

Поскольку ток потребления в режиме охраны небольшой, то питание охранной сигнализации осуществляется от любого аккумулятора с напряжением 12 вольт. Альтернативой датчика Холла ДХК-0.5А в данной схеме, может служить датчик KMZ10В фирмы Philips (возможно, потребуется настройка компаратора).

Дополнительная информация

При диагностике датчиков в автомобиле следует проверять сопряженные узлы. Например, причиной плохой работы зажигания может стать влага в контактах или надломленная жила в жгуте проводки. Некоторые владельцы сталкиваются со скрытыми дефектами в блоках управления (окислением или отгоранием дорожек на печатной плате). Чрезмерный износ шестерен привода распределителя может стать причиной периодических сбоев в системе зажигания.

При некорректной работе датчика на машинах с распределенным впрыском топлива в память контроллера записываются ошибки. После проведения ремонта возможно включение предупредительных ламп в комбинации приборов. Для сброса кодов необходимо отключить аккумулятор от бортовой сети на 5–7 минут. Если процедура не помогла, то стереть идентификаторы неисправностей можно при помощи диагностического сканера, подключенного к разъему OBD-II.

Искать на сайте

Это и есть генератор Холла.

Все очень просто. Следующим этапом нам потребуется аккуратно отпаять ножки элемента от тестовой схемы и подключить его к стандартным контактам разъема.

Включаешь зажигание.

В схему датчика входит источник питания, преобразующий однополярное напряжение питания в двухполярное питание схемы. Вытяните штифт пассатижами. В исправном устройстве напряжение будет изменяться от 0,4 В до 11 В. Благодаря простым приемам автомобилист сэкономит свое время на ремонт, а также исключит ненужную трату денег.

Импульсы же возникают благодаря тому, что прорези идут не через одинаковое расстояние, а через разное, то есть они чередуются. Замена датчика: инструкция для автомобилистов Для установки нового датчика зажигания нужно правильно вынуть тот, который вышел из строя. Резисторы R1, R2 задают выходной ток нашего импульсного датчика.

Отсоедините крышку трамблера. Третий провод используется для передачи сигнала, полярность которого изменяется относительно общего провода питания. Подключите вольтметр к выходу датчика. Потребует применения такого датчика контроль оборотов выходных валов редукторов, контроль направления вращения двух и более синхронизируемых механизмов, учет расхода жидкости.

Датчики магнитного поля. Датчики Холла в схемах на МК

Еще раз проверяем работу тестером и на этом работа по ремонту датчика Холла можно считать завершенным. Если же невозможно установить исправный датчик, можно воспользоваться несложным устройством, которое будет дублировать его работу. Но наибольшее применение генератор Холла получил в автомобильной промышленности — для измерения положения распределительного и коленчатого валов, в качестве бесконтактного электронного зажигания и в других целях. Первые приборы получались довольно громоздкими и не очень эргономичными.

Применение неодимовых магнитов самых сильных постоянных магнитов позволяет уместить на диске достаточное количество малогабаритных магнитов. Обычно замена датчика Холла состоит из нескольких этапов: Прежде всего, трамблер снимается с машины. Также не стоит исключать из вида и другие неисправности системы зажигания , встречающиеся в автомобилях. Новый датчик Холла устанавливается в обратной последовательности. Наиболее легким способом считается замена прибора на исправный. установка зажигания с датчиком холла на мотоцикле .БАШКИРИЯ СТЕРЛИТАМАК

Ремонт

В ремонте датчиков Холла смысла нет, так как затраты на это превысят его стоимость, которая в границах 3–5$.

Если ради интереса кто-то захочет заняться починкой, то это можно попробовать сделать для автомобильных изделий, но ремонт будет касаться не самой сердцевины сенсора, а «фишки» и кабеля: часто сгорает конденсатор, его и провода можно перепаять. Причина неисправности может крыться в закисших контактах, их зачищают.

Какая польза от датчиков Холла в смартфонах?

Смартфон с датчиком Холла

Если пользователь мобильной техники до сих пор не знает, чем известен знаменитый ученый Эдвин Холл, то пора восполнить этот пробел. Датчики, работа которых основана на открытии зала, теперь стоят в каждом третьем смартфоне — хотя раньше такие датчики устанавливались только на элитных гаджетах.

В списке датчиков, оснащенных смартфоном, иногда можно встретить датчик Холла — пожалуй, самый загадочный из всех известных датчиков.Если функции, скажем, пульсометра и шагомера ясны и очевидны, то назначение датчика Холла известно не каждому пользователю. В этой статье мы узнаем, кто такой Холл и почему датчик, названный в его честь, становится все более популярным.

Немного физики

Эдвин Холл — американский физик. Свое знаменитое открытие он сделал в девятнадцатом веке. Холл обнаружил, что если проводник (например, металлическая пластина), подключенный к источнику постоянного тока, поместить в магнитное поле, сила Лоренца будет действовать на движущиеся электроны.В результате электроны движутся по дуге и вызывают одну из поверхностей пластины. На этой грани электроны будут накапливать отрицательный заряд, а на противоположной — положительный. Разность потенциалов на 2 краях платы называется , напряжение Холла .

Практическое применение эффекта Холла было найдено всего через 15 лет после смерти ученого. Теперь этот эффект основан на работе дисководов ПК, компьютерных кулеров, систем зажигания автомобилей и даже реактивных двигателей.Разработчики сравнительно недавно догадались, как применить проем Холла на своем смартфоне.

Зачем мне нужен датчик Холла на смартфоне?

Датчик Холла (также называемый магнитным датчиком ) комплектуется многими моделями популярных производителей и некоторыми смартфонами малоизвестных китайских брендов. Этот датчик предназначен для измерения напряжения Холла.

Датчик не измеряет напряжение, а только определяет его наличие или отсутствие, а затем отправляет сигнал на смартфон.При получении сигнала гаджет выполняет запрограммированное действие.

Как правило, использование датчика Холла на телефоне сводится к решению всего двух задач, поэтому для гаджета этот датчик необходим:

  • Датчик ускоряет запуск GPS-навигатора и улучшает географическое положение.
  • Датчик Холла дает смартфону возможность взаимодействовать с магнитными экранами.

Кроме того, благодаря открытию американского ученого стало возможным управлять жестами — «трюк », который пользователи впервые встретили на Samsung Galaxy S3.

Конечно, возможности эффекта Холла в дизайне смартфонов раскрыты не полностью. Причина тому — ряд технических ограничений. Использование отверстия « полностью » не позволяет использовать компактные размеры современных мобильных устройств и аккумуляторов с недостаточной мощностью.

Принцип взаимодействия датчика Холла с мобильными аксессуарами

Благодаря датчику Холла мобильные устройства могут взаимодействовать с так называемыми «умными» чехлами ( Smart Case ).Магнит установлен в крышке такой заслонки. Как только пользователь закрывает крышку корпуса, появляется эффект Холла, датчик посылает сигнал в систему смартфона — и экран гаджета автоматически блокируется. Конечно, все это происходит за несколько секунд. Когда владелец смартфона открывает крышку крышки, напряжение Холла «ничего не гаснет». Датчик дает команду на разблокировку дисплея.

Smart Case

Если владелец гаджета использует оконный бокс (как на рисунке выше), то датчик Холла дает команду не выключать полностью дисплей, а переключать его из одного режима в другой.Когда крышка закрыта, в доступной области экрана могут отображаться часы, календарь, музыкальный проигрыватель или список уведомлений.

Беспокоиться о том, что магнит «умного» корпуса повредит начинку смартфона, точно ни за что. Магнитное поле не портит гаджет — это подтверждено многочисленными профессиональными и любительскими тестами.

Датчик Холла экономит аккумулятор гаджета — это главное достоинство этого датчика. Активированный экран с высокой яркостью потребляет внушительное количество драгоценных миллиампер.

В каких смартфонах есть датчик Холла?

К сожалению, не все производители в списке возможностей своих гаджетов указывают, есть ли в устройстве датчик Холла. В кратком списке параметров такой информации точно нет. Однако пользователь может быть уверен: если для смартфона производится оригинальный Smart Case, значит, это устройство как раз оснащено магнитным датчиком.

Последнее слово

К сожалению, «лучшие умы» индустрии мобильной электроники не смогли (пока?) Узнать, как использовать открытие зала, чтобы полностью раскрыть его потенциал.Автоматическое отключение / переключение дисплея — «разговор с ребенком» по сравнению с тем, что можно сделать, если можно преодолеть технические ограничения. Однако поиск путей реализации наблюдений Холла продолжается — и прогресс не стоит на месте. Об этом может свидетельствовать, например, появление очков виртуальной реальности Google Card Board , управление которыми основано на взаимодействии магнита и датчика Холла.

Что такое датчик Холла? — Аналоговый — Технические статьи

Датчик Холла, также известный как датчик Холла, отслеживает магнитные поля с высокой точностью, постоянством и надежностью.Почему это важно? Потому что это позволяет вам определять положение и движение объектов в системе. В этой статье я объясню, что такое датчик на эффекте Холла, его основные строительные блоки и функции, а также распространенные варианты использования датчиков Холла.

Датчик Холла не является типичной интегральной схемой (ИС), потому что, в отличие от большинства ИС, он косвенно взаимодействует со своей ключевой «схемой» — магнитом! Как показано на рисунке 1, элементарный датчик на эффекте Холла состоит из элемента Холла, который превращает магнитное поле в напряжение, и схемы обработки, такой как операционный усилитель.Схема как аналоговой, так и цифровой обработки критически важна для работы датчика Холла, потому что выходное напряжение элемента Холла крошечное — иногда в диапазоне микровольт. Один из простейших датчиков на эффекте Холла использует только трехконтактные корпуса, транзистор с малым контуром (SOT) -23 или контур транзистора (TO) -92, для источника питания, заземления и выхода.

Рисунок 1: Базовый датчик Холла

Магнитные поля никогда не бывают прямыми линиями, поскольку они простираются от одного полюса к другому, но на Рисунке 1 для простоты показаны прямые линии, падающие на датчик.Точное знание того, как эти векторы поля ведут себя в космосе, позволяет вам делать с ними много творческих работ. Ознакомьтесь с примечаниями к применению на странице поддержки и обучения магнитных датчиков TI, где можно найти некоторые основные идеи.

Вы когда-нибудь задумывались о том, как работают датчики на эффекте Холла? Простой ответ заключается в том, что небольшое напряжение возникает на куске проводящего материала, вытесняя электроны в одну сторону, поскольку ток проталкивается через проводник и магнитное поле прикладывается в ортогональном направлении (см. Рисунок 2).Этот потенциал напряжения приписывается силе Лоренца, открытой Эдвином Холлом в 1879 году.

Рисунок 2: Эффект Холла

Обратите внимание на направление магнитного поля относительно элемента Холла? Это ключевой аспект датчика Холла, который необходимо учитывать при проектировании механической части. В большинстве таблиц данных датчиков Холла указывается ожидаемое направление магнитного поля относительно поверхности упаковки. В ассортименте датчиков Холла TI есть несколько вариантов.

Это фундаментальное понимание того, как работают датчики на эффекте Холла, необходимо для того, чтобы вы знали, как их эффективно использовать при правильном расположении относительно магнита. Но вам также необходимо знать, как магнитные поля, создаваемые магнитом, влияют на расстояние. На рисунке 3 показан простой график того, как магнитное поле затухает на расстоянии от магнита.

Рисунок 3: Распад магнитного поля на расстоянии

Чтобы максимизировать разрешение измерения, вам необходимо убедиться, что минимальные и максимальные значения расстояния системы находятся в пределах области с наибольшим изменением магнитного поля.

На сегодняшний день доступны три типа датчиков положения на эффекте Холла:

  • Переключатель на эффекте Холла — это цифровое устройство вывода, которое переключает состояния в зависимости от магнитного поля, которое он воспринимает. По мере приближения магнита к датчику магнитное поле, которое он воспринимает, становится сильнее и переключается в активное состояние, называемое B OP . Когда магнитное поле, которое оно ощущает, ослабевает (по мере того, как магнит отодвигается дальше), устройство переключается обратно в неактивное состояние на пороге, называемом B RP .
  • Защелка на эффекте Холла практически идентична переключателю, за исключением того, что у нее есть точка B RP , противоположная по магнитной полярности. Другими словами, для переключения состояния выходного напряжения требуется переменная полярность магнитного поля.
  • Линейный датчик на эффекте Холла, также известный как линейный, представляет собой аналоговое устройство, которое изменяет свое выходное напряжение пропорционально магнитному полю, которое он обнаруживает. В отсутствие магнитного поля устройство будет производить выходное напряжение, равное половине напряжения источника питания (V Q ).По мере усиления магнитного поля выходное напряжение будет либо приближать его к земле (магнитный север), либо приближаться к напряжению источника питания (магнитный юг), пока не достигнет точки насыщения. Датчик не будет измерять магнитные поля более сильные, чем те, которые достигаются при насыщении, из-за неизменного выходного напряжения. Коммутаторы и линейные устройства бывают однополярных версий (которые могут распознавать только северное или южное поля) или многополярных переключателей и биполярных линейных датчиков (которые распознают как северные, так и южные поля).

На рис. 4 показаны соответствующие передаточные функции трех типов датчиков Холла.

Рисунок 4: Передаточные функции переключателя, защелки и линейного датчика

Магнитные точки B OP и B RP в переключателях и защелках определяют значение гистерезиса (B HYS = B OP — B RP ). Использование гистерезиса в вашей системе предотвратит переключение между выходными состояниями.

Общие приложения датчиков Холла

Переключатели

широко используются в портативных компьютерах, дверцах холодильников и оконечных переключателях для обнаружения приближения магнита к датчику. Защелки популярны в приложениях для кодирования вращения и коммутации двигателей, где вращательный аспект приложения созрел для непрерывного мониторинга положения вращающегося вала. Линейные датчики могут точно измерять смещение объекта, поэтому они подходят для линейных приводов, триггеров переменной скорости и педалей ускорения.

Датчики

на эффекте Холла обеспечивают рентабельный способ наблюдения за движущимися объектами. В зависимости от области применения вы можете использовать переключатель, защелку или линейный датчик. Если вы хотите продолжить изучение датчиков на эффекте Холла, я рекомендую вам ознакомиться с нашей серией тренингов TI Precision Labs по магнитным датчикам.

Дополнительные ресурсы

Что такое ЭДС Холла? — MVOrganizing

Что такое ЭДС Холла?

Эффект Холла — это создание магнитным полем напряжения ε, известного как ЭДС Холла, на проводнике с током.ЭДС Холла дается выражением. ε = Blv (B, v и l, взаимно перпендикулярно) для проводника шириной l, по которому заряды движутся со скоростью v.

Что такое эффект Холла и его применение?

Цифровой выход Датчики на эффекте Холла в основном используются в магнитных переключателях для обеспечения цифрового выхода напряжения. Таким образом, они подают в систему входной сигнал ВКЛ или ВЫКЛ. Основное отличие датчика Холла с цифровым выходом — это средство управления выходным напряжением.

Что такое коэффициент Холла?

см / г или другие варианты.В результате эффект Холла очень полезен как средство измерения плотности носителей заряда или магнитного поля. Одна очень важная особенность эффекта Холла состоит в том, что он различает положительные заряды, движущиеся в одном направлении, и отрицательные, движущиеся в противоположном.

Что такое коэффициент Холла?

Двумя наиболее широко используемыми единицами для коэффициентов Холла являются единицы СИ, м3 / А-сек = м3 / Кл, и гибридная единица Ом-см / Г (которая объединяет практические величины вольт и ампер с величинами сантиметра и гаусса. ).

Что подразумевается под напряжением Холла?

[′ hȯl ‚vōl · tij] (электроника) Напряжение холостого хода, возникающее на полупроводниковой пластине из-за эффекта Холла, когда заданное значение управляющего тока протекает в присутствии заданного магнитного поля.

Как рассчитать эффект Холла?

При вычислении напряжения Холла нам необходимо знать ток через материал, магнитное поле, длину, количество носителей заряда и площадь. Поскольку все они указаны, напряжение Холла рассчитывается как: v = IBlneA = (100A) (1.5T) (1,0 × 10–2м) (5,9 × 1028 / м3) (1,6 × 10–19C) (2,0 × 10–5м2) = 7,9 × 10–6В.

Что такое переключатель на эффекте Холла?

Датчик на эффекте Холла — это электронное устройство, предназначенное для обнаружения эффекта Холла и преобразования его результатов в электронные данные, для включения и выключения цепи, для измерения переменного магнитного поля или обработки с помощью встроенного компьютера. или отображается в интерфейсе.

Как рассчитать напряжение Холла?

qE = qvdB и E = vdB, поэтому напряжение Холла составляет: VH = -vdBd, где vd — скорость дрейфа зарядов.Напряжение Холла пропорционально магнитному полю, поэтому измерение напряжения легко превратить в измерение B.

Что такое эксперимент с эффектом Холла?

Эффект Холла является основой физики твердого тела и важным диагностическим инструментом для определения характеристик материалов, особенно полупроводников. Он обеспечивает прямое определение знака носителей заряда, например электрон или дырки (приложение A) и их плотность в данном образце.

Кто изобрел эффект Холла?

физик Эдвин Холл

Каково происхождение напряжения Холла?

История эффекта Холла начинается в 1879 году, когда Эдвин Х.Холл обнаружил, что небольшое поперечное напряжение появляется на тонкой металлической полоске с током в приложенном магнитном поле. Открытие эффекта Холла позволило напрямую измерить плотность носителей.

Почему коэффициенты Холла уменьшаются с температурой?

Как известно, коэффициент Холла зависит от плотности и типа носителей. Итак, в металлах рассеяние электронов увеличивается с ростом температуры фононами, поэтому плотность свободных электронов изменяется.

Что такое генератор эффекта Холла?

[‘hȯl’ jen · ə‚rād · ər] (электромагнетизм) Генератор, использующий эффект Холла для получения выходного напряжения, пропорционального напряженности магнитного поля.

Что такое множитель эффекта Холла?

Возведение в квадрат двух сигналов в умножителе на эффекте Холла получается простым соединением токовых входных клемм элемента Холла последовательно с катушками, создающими поле. Настоящий измеритель среднеквадратичных значений был построен с использованием множителя на эффекте Холла в качестве устройства возведения в квадрат.

Что измеряет датчик на эффекте Холла?

Измерение мощности — Преобразователь на эффекте Холла используется для измерения мощности проводника.Ток подается через проводник, который создает магнитное поле. Напряженность поля зависит от силы тока.

Что такое датчик Холла в телефоне?

Датчики

на эффекте Холла используются для бесконтактного переключения, позиционирования, определения скорости и измерения тока. Основная функция этого датчика приближения — определять, насколько близко экран вашего смартфона находится к вашему телу.

Как работают датчики Холла?

Используя полупроводники (например, кремний), датчики на эффекте Холла работают, измеряя изменяющееся напряжение, когда устройство находится в магнитном поле.Другими словами, как только датчик на эффекте Холла обнаруживает, что теперь он находится в магнитном поле, он может определять положение объектов.

Что такое эффект Холла PDF?

В 1879 г. Э. Х. Холл заметил, что когда проводник с током помещается в поперечное магнитное поле, сила Лоренца на движущихся зарядах создает разность потенциалов, перпендикулярную как магнитному полю, так и электрическому току. Этот эффект известен как эффект Холла [1].

Может ли коэффициент Холла равняться нулю?

В полупроводнике коэффициент Холла может быть положительным или отрицательным, в зависимости от того, относится он к типу P или N.Согласно прогнозам, собственный полупроводник с равным количеством подвижных электронов и дырок будет иметь нулевой коэффициент Холла.

Что такое измерение эффекта Холла?

Измерение напряжения Холла состоит из серии измерений напряжения с постоянным током I и постоянным магнитным полем B, приложенным перпендикулярно плоскости образца. Наконец, необходимо точно измерить температуру образца, напряженность магнитного поля, электрический ток и напряжение.

Почему датчики Холла выходят из строя?

Датчик Холла рассчитан на ток 20 миллиампер или меньше.Резистор расположен в сигнальной цепи, поэтому он может ограничивать ток, протекающий по этой цепи. Если сопротивление этого резистора снизится, ток увеличится, что приведет к многочисленным отказам датчика Холла.

Что находится внутри датчика Холла?

В датчике Холла ток подается на тонкую металлическую полоску. В присутствии магнитного поля, перпендикулярного направлению тока, носители заряда отклоняются силой Лоренца, создавая разницу в электрическом потенциале (напряжении) между двумя сторонами полосы.

Что такое датчик Холла в двигателе?

Датчик Холла, расположенный рядом с ротором (вращающейся частью двигателя), сможет очень точно определять его ориентацию путем измерения изменений магнитного поля. Подобные датчики также можно использовать для измерения скорости (например, для подсчета скорости вращения кулачка или коленчатого вала колеса или двигателя автомобиля).

Как сделать датчик Холла?

Датчик на эффекте Холла — это датчик, который реагирует на магнитное поле.Когда датчик Холла помещен в магнитное поле, электроны, проходящие через него, будут перемещаться в одну сторону от датчика. Тогда датчик будет иметь одну положительную и одну отрицательную стороны и создавать напряжение, известное как напряжение Холла.

Пределы обнаружения магнитного поля для ультрачистых графеновых датчиков Холла

Пределы обнаружения для датчиков Холла микрометрового масштаба

На рисунке 1 представлен наш основной результат. Мы сравниваем минимальный предел обнаружения магнитного поля S B 1/2 для наших устройств (черные маркеры) с соответствующими измерениями для высокопроизводительных датчиков Холла микрометрового масштаба, приведенными в литературе (см. Дополнительную таблицу 1). 3,11,12,13,14,15,17,25,26,27 .Мы выбираем опорную частоту 1 кГц, при которой шум 1/ f является доминирующей составляющей шума (см. Ниже). Амплитуда шума 1/ f варьируется в зависимости от устройства в зависимости от системы материалов и внешних факторов, включая историю изготовления, выбор подложки, диэлектрическую среду, типы контактов и условия смещения 16 . Несмотря на большое разнообразие механизмов, вызывающих шум 1/ f , существуют некоторые часто наблюдаемые зависимости.Обычно амплитуда спектральной плотности мощности шума 1/ f увеличивается для небольших устройств как 1/ A , где A — это площадь устройства. Предел обнаружения магнитного поля зависит от квадратного корня из спектральной плотности мощности напряжения Холла, что, в свою очередь, предполагает приблизительное масштабирование предела обнаружения S B 1/2 A −1/2 w −1 с размером устройства w для датчиков Холла 5,13 .Таким образом, метрика S B 1/2 w обычно используется для оценки характеристик датчиков Холла в зависимости от материалов и размеров устройств 17 .

Рис. 1: Характеристики датчиков Холла микрометрической шкалы.

Минимальный предел обнаружения магнитного поля S B 1/2 при 1 кГц в сравнении с шириной w датчиков Холла, указанных здесь и в литературе. Черные маркеры показывают лучшую производительность наших устройств с графитовым вентилем (кружки; G1 ​​– G3) и с металлическим вентилем (ромбы; M1 и M2) в нулевом фоновом магнитном поле, а красные кружки показывают производительность G1 при 1 Тл и 3 T фоновое поле, как указано.Все остальные маркеры являются оценками лучших характеристик в нулевом фоновом поле устройств, сделанных из структур на основе полупроводников и графена, включая графен, выращенный методом химического осаждения из газовой фазы («G»), эпитаксиальный графен («G / SiC») и hBN. -инкапсулированный расслоенный графен («hBN»). Закрашенные (открытые) маркеры соответствуют измерениям при 4,2 К (300 К). Сплошные линии указывают на маркеры соединения глаз, соответствующие одному и тому же материалу и процессу изготовления. Пунктирными линиями обозначена постоянная S B 1/2 w .Маркеры с планками погрешностей экстраполируются из измерений, представленных на разных частотах, при условии, что в шуме преобладает шум 1/ f , и масштабируются как f α (полосы ошибок отмечают диапазон 0,4 < α <0,6 ).

Согласно этой метрике устройства с аналогичной производительностью расположены вдоль пунктирных диагональных линий постоянной S B 1/2 w на рис. левый угол.При комнатной температуре характеристики устройства G1, графенового датчика Холла с вентилями FLG, аналогичны характеристикам лучших датчиков из InGaAs 26 , InSb 15 и графена, инкапсулированного в hBN 17 . При низкой температуре (4,2 К) предел обнаружения устройства G1 уменьшается на порядок, и мы получаем наименьшее значение S B 1/2 w , сообщенное для любого датчика Холла, чтобы Дата. Дополнительные устройства с графитовым вентилем (G2 и G3) показывают производительность, соответствующую приблизительному масштабированию предела обнаружения ± -1 .Однако графеновые устройства с инкапсулированным hBN с металлическими затворами (M1 и M2) демонстрируют более высокие пределы обнаружения, чем устройства с графитовыми затворами при низкой температуре (см. Дополнительную таблицу 2). При комнатной температуре устройство G1 работает аналогично устройствам с инкапсулированным hBN без графитовых затворов (обозначенных «hBN»), о которых ранее сообщалось 17 . Это согласуется с наблюдением, что графитовые затворы улучшают электронные свойства графена преимущественно при низкой температуре. В частности, графитовые затворы уменьшают внутреннюю неоднородность заряда в графеновых устройствах 22,23,24 , делая доступными плотности мобильных носителей до ~ 2 × 10 9 см -2 и приводя, в свою очередь, к большему достижимому коэффициенту Холла. .Однако при комнатной температуре тепловое возбуждение носителей заряда и рассеяние акустических фононов увеличивают неоднородность заряда и ограничивают подвижность носителей 20,28,29 .

Кроме того, мы демонстрируем небольшой предел обнаружения даже в фоновом магнитном поле в несколько тесла. Датчики Холла, основанные на высокоподвижных двумерных проводниках, обычно не совместимы с сильными фоновыми магнитными полями, поскольку эти датчики демонстрируют квантовый эффект Холла (КЭХ). QHE создает широкие области пространства параметров, в которых напряжение Холла является постоянным либо в зависимости от магнитного поля, либо от плотности носителей.Здесь мы используем электростатическое стробирование, чтобы настроить плотность носителей на значение, при котором напряжение Холла изменяется в зависимости от магнитного поля. Таким образом, мы достигаем низкого предела обнаружения магнитного поля при высоком фоновом магнитном поле, несмотря на наличие КЭХ. При низкой температуре и большом фоновом магнитном поле устройство G1 поддерживает предел обнаружения ~ 2–3 мкТл Гц -1/2 при 1 кГц. Предел обнаружения больше по сравнению с измеренным при нулевом фоновом магнитном поле как из-за увеличения шума напряжения, так и из-за уменьшения коэффициента Холла (см. Ниже).Тем не менее, предел обнаружения по-прежнему остается сопоставимым с пределом обнаружения многих высокопроизводительных датчиков Холла, испытанных в нулевом магнитном поле.

Структура устройства

На рисунке 2а показана структура наших устройств с графитовым затвором вместе с оптическим изображением устройства G1 (см. Дополнительный рисунок 1 для оптических изображений дополнительных устройств, включая устройства с металлическими затворами). Каждое устройство с графитовым затвором изготавливается на кремниевой подложке из гетероструктуры, состоящей из расслоенного MLG, инкапсулированного диэлектриками затвора hBN, и электродов затвора FLG, собранных с использованием техники сухого переноса (см. Методы).Комбинация низкой плотности заряженных дефектов в hBN и способности FLG экранировать заряженные примесные беспорядки в кремниевой подложке улучшает подвижность носителей 20,30 , уменьшает неоднородность заряда 22,23 и может снизить зарядовый шум в графеновых устройствах. 21 . Верхний затвор регулирует плотность носителей в активной области устройства, а заземленный нижний затвор экранирует электрическое поле от кремниевого заднего затвора. Мы подаем 40 В на кремниевый задний затвор, чтобы вызвать высокую концентрацию электронов в графеновой части выводов.Это снижает сопротивление выводов и краевых контактов 24 , следовательно, снижает шум напряжения (см. Дополнительное примечание 1 и дополнительный рисунок 1).

Рис. 2: Сверхчистые графеновые датчики Холла.

a Изображение устройства G1 с оптического микроскопа ( w = 1 мкм, масштабная линейка: 5 мкм). Левое поперечное сечение: структура поперечного слоя Холла, состоящая из однослойного графена, инкапсулированного гексагональным нитридом бора (hBN) и нескольких слоев графита. Правый разрез: краевые контакты. b Схема измерительной конфигурации с напряжением Холла В H , двухточечным напряжением В 2p , током смещения I и внеплоскостным магнитным полем B . c Напряжение верхнего затвора ( В g ) Зависимость коэффициента Холла R H и двухточечного сопротивления R 2p при 4,2 К при малом смещении переменного тока и фоновых полях до В = 100 мТл.На верхней оси показаны соответствующие плотности электронов и дырок.

Отклик по напряжению Холла

Сначала мы оцениваем электронное качество наших устройств при низком фоновом магнитном поле и низкой температуре в криостате с жидким гелием. Мы смещаем устройство небольшим переменным током I и измеряем двухточечное ( В 2p ) и холловское ( В H ) напряжения, используя стандартные методы низкочастотной синхронизации с применением верхнего затвора. напряжение В г для настройки плотности носителей (рис.2а, б). Из серии разверток затвора при фиксированном магнитном поле B до 100 мТл (см. Дополнительный рисунок 2), мы определяем коэффициент Холла R H = I −1 (∂ V H / ∂ B ) B = 0 и извлеките плотность носителей n = 1 / (e R H ) (рис. 2c, верхняя панель). При напряжениях на затворе вблизи точки зарядовой нейтральности (CNP) сосуществование электронов и дырок делает напряжение Холла нелинейным в магнитном поле 31 .В другом месте напряжение Холла линейно в B по крайней мере до 100 мТл и R H ~ n -1 ~ В g -1 при условии простой емкостной связи ворота к плотности мобильных операторов 19 . Экстраполяция плотностей электронов и дырок к нулю показывает, что электроны и дырки, по-видимому, достигают зарядовой нейтральности при различных значениях В, , г, . Это согласуется с вкладами в поведение заряда графенового листа от квантовой емкости и дополнительных ловушек заряда с непостоянной емкостью, которые становятся значительными из-за большой емкости затвора и небольшой неоднородности заряда в наших устройствах 19,32,33 .Максимальное (минимальное) значение R H для электронного (дырочного) легирования 240 кОм T −1 (−340 кОм T −1 ) подразумевает наименьшую плотность мобильных носителей δn ~ 2,6 × 10 9 см −2 (−1,8 × 10 9 см −2 ), ограниченная внутренней неоднородностью заряда. Эта низкая неоднородность заряда согласуется с данными о других устройствах с атомарно-гладкими электродами затвора из монокристаллического графита 22,23 . Двухточечное сопротивление R 2p = V 2p / I (рис.2в, нижняя панель) имеет резкий пик, превышающий 200 кОм на CNP. Узкая ширина этого пика подразумевает неоднородность заряда ~ 4 · 10 9 см −2 , что согласуется с полученным с использованием R H . При умеренном электронном или дырочном легировании значение R 2p уменьшается до нескольких кОм, в основном за счет сопротивления графенового канала (~ 1 кОм) и краевых контактов (~ 1-2 кОм).

Затем мы охарактеризуем характеристику напряжения как функцию приложенного постоянного тока смещения до 50 мкА.Отклик напряжения Холла на небольшое изменение магнитного поля δB составляет δV H = IR H δB , предполагая, что применение большего тока смещения в принципе пропорционально увеличивает сигнал напряжения. На практике большое смещение постоянного тока вызывает два изменения транспортных характеристик устройств (рис. 3a): пик R H уменьшается, а напряжение затвора CNP В g 0 смещается.Направление сдвига В г 0 (рис. 3в) зависит от полярности приложенного тока. Эти изменения согласуются с градиентом потенциала и результирующим градиентом плотности носителей в устройстве 32 (см. Дополнительное примечание 3 и дополнительный рисунок 3). Это изменяет среднее значение R H в пределах креста Холла и ограничивает его пиковое значение. Несмотря на уменьшение пика R H , применение большего тока смещения по-прежнему увеличивает абсолютную чувствительность к напряжению IR H = (∂ V H / ∂ B ) B = 0 (Инжир.3b), что дает большее изменение напряжения Холла на единицу изменения магнитного поля.

Рис. 3: Измерения коэффициента Холла.

a Коэффициент Холла R H для устройства G1 при изменении смещения постоянного тока при 4,2 К. b Зависимость от тока смещения пикового значения IR H . c Зависимость напряжения точки нейтральности заряда от тока смещения В г 0 . Планки погрешностей представляют собой неопределенность в определении точки, в которой R H пересекает ноль.

Шум напряжения и предел обнаружения

Чтобы определить предел обнаружения, показанный на рис. 1, мы измеряем шумовые характеристики устройств вместе с характеристикой напряжения. Мы измеряем флуктуации напряжения Холла в реальном времени (рис. 4a) и применяем преобразование Фурье (см. Методы), чтобы получить спектральную плотность шума напряжения Холла S В 1/2 (рис. 4b). ). При низком смещении 60 Гц и входной шум предусилителя преобладают в спектре S V 1/2 (рис.4в). Форма спектра шума при более высоком смещении предполагает наличие как фликкер-шума (шум 1/ f ; S V 1/2 f −1/2 ), так и случайного телеграфный шум (RTN; S V 1/2 постоянная на низкой частоте, S V 1/2 f −1 на высокой частоте), as ранее сообщалось о датчиках Холла микрометрового масштаба 11,13,17 и устройствах на основе графена 16,21,34 .В то время как шум 1/ f , скорее всего, возникает из-за случайных событий зарядки и разрядки ансамбля зарядовых ловушек, RTN характерен для одиночной зарядовой ловушки, более прочно связанной с устройством. Эти события зарядки могут вызывать флуктуации как подвижности носителей, так и плотности носителей, которые заметны в устройствах на основе графена при низкой плотности носителей 13,16,34 . Колебания заряда, которые модулируют контактное сопротивление и состояние дефектов в подложке или протравленных краях устройства, могут сильно влиять на шум напряжения, особенно вблизи нейтрального заряда, где флуктуации заряда плохо экранируются 16,34 .Мы обнаружили, что поведение RTN изменяется между последовательными периодами охлаждения и при различных условиях смещения тока и напряжения затвора. В дополнительном примечании 4 мы количественно извлекаем относительные вклады RTN и шума 1/ f для типичного спектра шума.

Рис. 4: Измерения шума.

a Временные диаграммы напряжения Холла (смещение для ясности) и b Спектральная плотность шума напряжения Холла S В 1/2 для устройства G1 при фиксированном токе смещения и 4.2 К. Три кривые соответствуют напряжениям затвора, отмеченным в верхней части верхней панели ( d ). Пунктирные линии в b соответствуют ожидаемой зависимости случайного телеграфного шума (RTN) на высокой частоте ( f −1 ) и шума 1/ f ( f −1/2 ). c Сравнение спектров S V 1/2 при разных токах смещения. При каждом токе смещения мы устанавливаем В g так, чтобы R H ≈ 7.8 кОм T −1 , что соответствует n ≈ 8 × 10 10 см −2 . d IR H и R Смещение = В H ( B = 0) / I для тока смещения 20 мкА. e S V 1/2 и предел обнаружения магнитного поля S B 1/2 при 1 кГц. f Минимальная зависимость тока смещения S B 1/2 при 1 кГц.В панелях d f планки погрешностей определяются с учетом стандартной ошибки линейной подгонки для R H и стандартного отклонения S V 1/2 в окне шириной 200 Гц с центром в 1 кГц.

На рис. 4e обобщены низкотемпературные зависимости напряжения затвора S V 1/2 при нуле B и соответствующий предел обнаружения магнитного поля S B 1/2 = S V 1/2 / ( IR H ) при токе смещения 20 мкА и частоте 1 кГц.На этой частоте наиболее очевидна зависимость от затвора S V 1/2 ; частота достаточно мала, чтобы шум напряжения превышал минимальный уровень шума приборов, но достаточно высока, чтобы вклад RTN был небольшим. Форма кривой на рис. 4e аналогична форме сопротивления смещения при нулевом фоновом магнитном поле R смещение = В H ( B = 0) / I (рис. 4d ).Это смещение, скорее всего, возникает в нашем случае из-за неоднородного протекания тока на уровнях легирования, близких к зарядовой нейтральности, и имеет эффект связи дополнительных шумовых вкладов 1/ f , связанных с продольным сопротивлением 11,13 .

На рисунке 4f показано, что ток смещения 20 мкА минимизирует предел обнаружения магнитного поля. При этом промежуточном токе смещения увеличение сигнала напряжения выше минимального уровня аппаратного шума благоприятно по сравнению со снижением R H при большом токе смещения.Примечательно, что минимум S B 1/2 не встречается при том же значении V g , при котором R H достигает пика. Это указывает на то, что оптимальная рабочая точка датчика Холла уравновешивает настройку от CNP для уменьшения S V 1/2 и настройку близко к CNP для увеличения R H . Минимальное значение, S B 1/2 ~ 80 нТл Гц −1/2 при 1 кГц (самая нижняя точка на рис.1), насколько нам известно, является наименьшим пределом обнаружения магнитного поля, когда-либо зарегистрированным в датчике Холла микрометрового масштаба при 4,2 К. При комнатной температуре повторение измерений коэффициента Холла и напряжения Холла (см. Дополнительное примечание 5 и дополнительный рисунок 5c, d) показывает, что предел обнаружения, как правило, больше, но все же конкурирует с лучшими датчиками Холла, описанными в литературе (см. рис. 1).

Характеристики в большом фоновом магнитном поле

Наконец, мы охарактеризуем предел обнаружения небольших изменений магнитного поля при наличии большого фона магнитного поля.Насколько нам известно, об этом не сообщалось ни о каких высокоподвижных датчиках Холла микрометрового масштаба. В большом фоновом магнитном поле сопротивление Холла развивает плато (рис. 5a), разделенное на Δ ( V H / I ) −1 = 4e 2 / h , как и ожидалось для MLG в квантовый режим Холла 19 . Отклонение плато сопротивления от точного квантования вызвано большим током смещения и широкими расширенными холловскими контактами напряжения в нашем устройстве (рис.2а), которые смешивают значительную часть продольного сопротивления с холловским сопротивлением 35 . Коэффициент Холла R H = I −1 (∂ V H / ∂ B ) (рис. 5b – d) теперь достигает локальных минимумов при значениях ( B , В г ), соответствующие плато сопротивления. В сильном магнитном поле плато сопротивления сглаживается ( R H = 0). Повторяя измерения шума напряжения Холла, как описано выше, при 3 Тл получаем S B 1/2 ~ 3 мкТл Гц -1/2 при оптимальной настройке плотности несущей (рис.5d, В г ~ 0,8 В). Более высокий предел обнаружения по сравнению с измерениями в нулевом поле является результатом как уменьшенного R H , так и общего увеличения шума напряжения в большом фоновом магнитном поле, которое коррелирует с большим продольным магнитосопротивлением и также может быть отнесено к заряду флуктуации между локализованными и расширенными квантовыми холловскими состояниями 36,37 .

Рис. 5: Характеристики в большом фоновом магнитном поле.

a Зависимость V от магнитного поля H / I в квантовом режиме Холла для устройства G1 при 4,2 К. Кривые охватывают напряжения затвора, соответствующие плотности электронов 0,24–1,14 × 10 12 см −2 в нулевом поле. b R H определяется локально в каждой точке ( V g , B ). c , d R H и S B 1/2 при 1 кГц по горизонтальным линиям в ( b ): c B = 1 T , d B = 3 T.Планки погрешностей определяются с учетом стандартной ошибки линейной аппроксимации для R H и стандартного отклонения S V 1/2 в окне шириной 200 Гц с центром в 1 кГц. Все измерения выполняются при постоянном токе смещения 5 мкА.

Датчики и мобильные телефоны: эволюция датчика приближения и окружающего света

Датчик приближения и внешней освещенности в смартфоне

Когда мобильные телефоны превратились в смартфоны, датчик приближения (PS) и внешней освещенности (ALS) стал важным датчиком в каждом телефоне.Измерение окружающего освещения используется для регулировки подсветки экрана. Датчик приближения используется для обнаружения человека, держащего телефон рядом с ухом. В то время как некоторые производители мобильных устройств решили объединить датчики (PS и ALS), некоторые известные производители мобильных устройств предпочли хранить их отдельно.
Более двух десятилетий назад в оптических запоминающих устройствах использовались встроенные фотодиоды для преобразования оптических потоков битов в электронный сигнал. SystematIC был задействован в этой области в то время, когда технология была зрелой и достигла пределов механических, оптических и электрических характеристик.Встроенные фотодиоды были объединены с малошумящей и точной электроникой обработки сигналов, установленной на гибких отпечатках.
Имеет опыт работы с оптическими накопителями. Первые разработки SystematIC в области комбинированного PSALS начались в 2009 году и привели к созданию 10-битного чипа PSALS на основе экономичного процесса КМОП 0,6 мкм. При работе микросхеме требуется ток питания менее 100 мкА, а в режиме ожидания это на порядки меньше. За первым продуктом вскоре последовал чип 180-нм CMOS, который положил начало многим поколениям проектов PSALS в этом технологическом узле.180-нм CMOS оказалась идеальным местом для этой конструкции ИС со смешанными сигналами. Наряду с PSALS, SystematIC разработала микросхемы ALS, позволяющие измерять интенсивность окружающего света, которая соответствует реакции человеческого глаза в различных условиях освещения.
Комбинированный датчик PSALS стал товаром на рынке у множества конкурентов. Появились чипы с различными интегрированными фотодиодными структурами как в механической, так и в оптической областях для обнаружения длин волн RGB и ИК.
Постоянное стремление снизить стоимость деталей привело к разработке все более компактных корпусов и микросхем меньшего размера.Применение в современных мобильных телефонах ставит перед разработчиками микросхем непростые требования к микросхемам. Изначально выделенная область была зарезервирована в верхней части прозрачного экрана телефона, позже экран стал черным и почти непрозрачным. В телефонах высшего класса последнего поколения датчик работает за активным дисплеем. Подавление окружающего света при обнаружении приближения и подавление отражений внутри телефона — это проблемы, которым противодействуют лучшие в своем классе архитектуры.Компания
SystematIC разработала набор ключевых IP-блоков в 180-нм CMOS и поддерживает пользовательские разработки IC, которые охватывают все современные приложения. Эти IP-блоки состоят из считывающих фотодиодов, обработки сигналов, 16-битных сигма-дельта-преобразователей, а также функций и функций в цифровой области. SystematIC сотрудничает с партнерами в разработке продукта. Заказчики имеют доступ к технологии, проверенной на кристалле, для разработки заказных продуктов в короткие сроки для своих ИС следующего поколения.

Датчик Холла

и его роль в контроллере двигателя

Датчик Холла — широко используемый датчик, который обеспечивает обратную связь по положению ротора с контроллером двигателя.Давайте поймем значение этого датчика в системе управления автомобильным двигателем.

Система управления двигателем BLDC представляет собой сложную схему, в которой несколько компонентов работают в тандеме, чтобы заставить двигатель двигаться желаемым образом. Эффективность, долговечность и производительность — вот атрибуты, которые больше всего волнуют инженеров при проектировании такой системы.

В то время как магниты и катушки заботятся об электрическом аспекте, микроконтроллер действует как мозг, который управляет двигателем.Но даже самый острый мозг нуждается в сенсорной информации.

Два сенсорных входа, которые здесь имеют большое значение, — это Speed ​​ и Position . Давайте разберемся с ними в контексте коммутации двигателей.


Коммутация — это процесс переключения тока в фазах двигателя для облегчения вращения двигателя.

В щеточных двигателях щетки контактируют с коммутатором и переключают ток для движения двигателей.Двигатели BLDC не имеют щеток; таким образом, они должны приводиться в движение электронным способом с помощью системы управления двигателем.

Контроллер двигателя BLDC подает прямоугольные сигналы (напряжение) на магниты ротора и создает магнитное поле, которое приводит в движение двигатель.


Важность скорости и положения ротора при коммутации двигателя:

Коммутация в двигателе BLDC — это 6-этапный процесс . 3-фазный H-Bridge используется для создания 6 векторов потока , каждый из которых вызывает вращение двигателя на 60 градусов (соответствует следующему положению), таким образом совершая полный оборот на 360 градусов.

  • Чтобы привести двигатель в движение, контроллер двигателя пропускает ток через обмотку статора. Это создает магнитное поле, которое, в свою очередь, развивает крутящий момент на роторе (постоянный магнит). В результате ротор начинает двигаться.
  • Теперь, если ротор приближается к движущемуся магнитному полю, ротор будет иметь тенденцию останавливаться из-за изменения полярности. В этом случае магнитное поле начнет притягивать ротор и останавливать движение. Чтобы этого избежать, система управления двигателем переключает ток, подаваемый на статор, и создается новое магнитное поле, и ротор продолжает свое движение.Таким образом, процесс коммутации сводится к переключению тока в правом экземпляре .
  • Понятие скорости и положения появляется в картине, поскольку этот «правильный экземпляр» должен быть обнаружен, когда он прибывает.
  • Датчик необходим для обратной связи с системой управления двигателем, указывающей, когда ротор достиг желаемого положения. Если коммутация выполняется быстрее или медленнее, чем скорость ротора, магниты не синхронизируются с магнитным полем статора.Это заставляет ротор вибрировать и останавливаться вместо вращения.
  • После одной коммутации необходимо определить положение ротора относительно статора, чтобы можно было инициировать следующую коммутацию. Следовательно, определение местоположения также является важным параметром.

В производстве электродвигателей используется множество типов датчиков, таких как энкодеры, переключатели и потенциометры. Однако наиболее широко используемый и применяемый датчик — это датчик Холла .

В следующих разделах мы подробно поговорим о датчике Холла и его роли в системе управления двигателем.

Что такое датчик Холла?

Датчик на эффекте Холла — это, по сути, преобразователь, основанный на принципе эффекта Холла.

Эффект получения измеримого напряжения, когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, называется эффектом Холла.

Проще говоря, напряжение создается на электрическом проводнике, когда к нему прикладывается магнитное поле в направлении, перпендикулярном потоку тока.

Датчик Холла — это твердотельное устройство, которое применяет этот принцип для определения положения, скорости и различных других атрибутов, необходимых для эффективной работы двигателя BLDC.

Увеличенный вид датчика Холла

Через полосу Холла постоянно проходит небольшой ток. Как уже упоминалось, переменное поле от этого магнита ротора будет создавать напряжение на полосе Холла. Затем напряжение подается на цифровую схему (показанную на диаграмме выше), которая, в свою очередь, выдает цифровой сигнал в качестве выхода датчика Холла.

Как работает датчик эффекта Холла в двигателе BLDC

Обычно двигатель BLDC имеет три датчика Холла, установленных на роторе или статоре. Эти датчики Холла расположены на расстоянии 120 градусов друг от друга, что дает угловое положение от 0 до 360 градусов.

Когда эти датчики Холла входят в контакт с магнитным полем ротора, он генерирует соответствующий цифровой импульс в единицах 1 и 0, как показано на схеме ниже.

За шесть шагов эти датчики Холла могут определять положение двигателя (угол).На диаграмме прямоугольные формы сигналов демонстрируют положительный и отрицательный импульс, генерируемый под соответствующим углом всеми тремя датчиками эффекта Холла — A, B и C.

Соответствующий график также показывает, как одна коммутация завершается за 6 шагов, когда угол достигает 360 градусов.

Следующее объяснение внесет большую ясность.

Когда магнит ротора пересекает один из датчиков, он выдает низкий или высокий сигнал в зависимости от того, прошел ли он через северный полюс или южный полюс ротора.Когда ротор пересекает все три датчика, эти датчики переключаются между низким и высоким, таким образом выявляя положение ротора каждые 60 градусов.

На схеме ниже показан типичный контроллер двигателя BLDC. Три линии, идущие от двигателя к контроллеру, отображают сигнал, посылаемый тремя датчиками Холла.

Датчик Холла способен различать положительный и отрицательный заряд, движущийся в противоположном направлении. Магнитное поле, обнаруженное датчиком на эффекте Холла, преобразуется в подходящий аналоговый или цифровой сигнал, который может быть считан электронной системой, обычно системой управления двигателем.

Ниже представлена ​​таблица истинности, полученная на основе показаний трех датчиков Холла. Как видите, состояние транзистора H-моста зависит от сигнала, обнаруживаемого датчиком. Стрелка вниз показывает движение по часовой стрелке (CW), а стрелка вверх показывает движение против часовой стрелки (CCW).

Теперь, когда у нас есть таблица истинности и график, угол (положение) и скорость ротора можно легко вычислить.

Преимущества использования датчика Холла в контроллере двигателя BLDC

  • Датчик Холла — это очень простое устройство, состоящее из магнитов, поэтому оно очень экономично для систем управления двигателями.
  • По той же причине эти датчики легко внедрить в передовые системы управления двигателями для электромобилей и других автомобильных решений.
  • Большинство двигателей BLDC оснащены этими датчиками.
  • Датчики на эффекте Холла
  • в основном невосприимчивы к таким условиям окружающей среды, как влажность, температура, пыль и вибрация.

Завершение

Многое происходит внутри системы управления двигателем BLDC. Есть алгоритм FOC, схемы H-Bridge, эффективная коммутация и многое другое.Среди множества компонентов внутри системы управления двигателем BLDC очень маленький и скромный датчик — датчик эффекта Холла — дает о себе знать.

Будучи экономичными и простыми в использовании, эти датчики сделали новые решения для управления двигателями BLDC более эффективными и удобными в использовании в автомобильной промышленности.

Посмотрите это пространство, чтобы узнать о других таких компонентах, которые играют жизненно важную роль в контроллере двигателя BLDC.

5 причин выбрать индукционные датчики на эффекте Холла »Gill Sensors & Controls —

5 причин выбрать индукционные датчики на эффекте Холла

Датчики на эффекте Холла

— это хорошо зарекомендовавшие себя бесконтактные датчики для многих тяжелых и тяжелых условий эксплуатации.Используя полупроводниковые кристаллы Холла и магнит, установленный на вращающемся валу или толкателе, выходной сигнал в ответ на близость магнита изменяется, и, следовательно, его положение может быть измерено.

Индукционная сенсорная технология, такая как та, которая используется в семействе линейных и поворотных датчиков Gill, также является бесконтактным решением, так какие преимущества они предлагают по сравнению с сенсорами на эффекте Холла?

  1. Поскольку индуктивный датчик является твердотельным устройством, в нем нет движущихся частей, подшипников или вала, требующих уплотнения, которые впоследствии могут изнашиваться или выходить из строя.Это означает, что индуктивное устройство может быть установлено в самых сложных условиях, где могут встречаться вода, грязь, жир, песок, песок и вибрация, которые могут вызвать преждевременный выход из строя механических компонентов.
  2. Точно так же, поскольку датчик Холла использует магнит в качестве привода, это делает его уязвимым для помех от намагниченных металлических конструкций и электроники, что снижает его производительность. Эта восприимчивость к магнитным помехам не присуща индуктивному датчику, что опять же повышает его пригодность для сложных условий и надежность работы.
  3. Индуктивный датчик снова дает преимущества там, где встречаются более высокие температуры. Датчики на эффекте Холла могут демонстрировать большие характеристики дрейфа при изменении температуры. Индуктивные датчики не обладают этой характеристикой.
  4. В условиях очень высоких температур электроника обработки сигналов не должна располагаться в непосредственной близости от чувствительных катушек. Для магнитных датчиков требуется относительно тонкая электроника на основе кремния, которая должна располагаться в точке измерения.
  5. Последним основным преимуществом индуктивных датчиков является более простая установка. Как описано ранее, для датчиков Холла требуется магнит в качестве активатора, и этот магнит должен быть встроен в установку. Индуктивному датчику требуется только железная мишень, поэтому активатор может быть существующей частью измеряемой сборки или встроен в сборку при изготовлении. В качестве альтернативы, это может быть отдельный компонент, профилированный для обеспечения определенного вывода или для более легкой интеграции в сборку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *