Меню

Гибридный автофокус это – Выбор зоны фокусировки и работа с точками автофокуса / Съёмка для начинающих / Уроки фотографии

Содержание

Следящий и другие виды автофокуса. Какая разница, как они работают? – ФотоКто

Итак, мы поняли, что такое следящий автофокус, теперь остался последний режим –автоматический или гибридный. Он создан для того, что бы самому решать нужно ли блокировать автофокус или нет. Этот режим, в отличие от других автоматических функций камеры, кажется мне странным и бесполезным, но это мое субъективное мнение, возможно, кто-то и найдет в нем полезность и удобство. 

Приоритет спуска или фокуса

Для многих новичков, существование таких настроек покажется удивительным. Но они существуют и не обратить на них внимание, разбирая автофокус, просто не возможно. Первый из приоритетов (спуска) означает, что в момент полного нажатия кнопки спуска, резкость не имеет никакого значения, другими словами, контроль за этим полностью возложен на фотографа. Этот режим стандартно включен для следящего автофокуса. 

Приоритет фокуса, означает, что после полного нажатия кнопки спуска должно быть попадание в резкость по определенной или определенным точкам фокусировки. Если такового не будет, то фотоаппарат не позволяет сделать кадр. Этот режим обычно включен при стандартных настройках в режиме одиночного кадра.

Контрастный и фазовый автофокус, какой лучше?

В цифровых камерах производители используют два вида автофокуса, как вы уже поняли из названия, это контрастный и фазовый автофокус. Будет очень хорошо, если мы разберемся в этих понятиях. 

Контрастная система автофокуса

Этот способ автофокуса используется в так называемых цифромыльницах и в зеркальных фотоаппаратах, но только при включении функции «Live View». Этот вид автофокуса не требует дополнительных фокусировочных датчиков, так как для наведения фокуса он использует исключительно матрицу фотоаппарата. Картинка, которая поступает с матрицы фотоаппарата, анализируется процессором камеры на наличие изменения контраста. При необходимости более точной наводки на резкость процессор дает команду двигателю слегка изменить положение линз объектива в любом направлении. Если после этой манипуляции контраст изображения уменьшается, то направление движения линз меняется на противоположное. Движение в правильном направлении продолжается до тех пор, пока контраст снова не начнет падать, достигнув этого предела, процессор говорит мотору вернуть линзы к тому шагу, при котором был максимальный контраст. Достигнув этого значения, фокусировка считается законченной.

Как вы понимаете, в силу таких особенностей работы автофокуса (не известно в какую сторону следует вращать двигатель) совершается множество лишних движений. Что приводит к основным минусам этого способа фокусировки – низкая скорость, что не позволяет использовать его на профессиональных камерах. Второй минус, может и не настолько критичный – повышенное энергопотребление. 

Плюсами данного способа, является простота конструкции и возможность сфокусироваться практически в любом месте кадра. 

Фазовый автофокус

Как вы понимаете, производители фототехники уже давно ответили нам и себе на вопрос, какой автофокус выбрать. Конечно же, победила фазовая система. Разберем, почему так. 

Этот вид автофокуса используется в зеркальных цифровых и пленочных камерах. Здесь присутствует небольшое вмешательство в оптическую систему передачи изображения, так кроме основного зеркала, камера оснащается дополнительным зеркалом, которое передает часть света на модуль фазового автофокуса. Любой световой луч, который проходит через светоделительную призму и микролинзы делится на два луча, каждый из которых потом направляется на датчик автофокуса. Если наводка на резкость точна, то лучи падают на датчик в строгом расстоянии друг от друга. 
 

fotokto.ru

Просто о контрастном и фазовом автофокусе

Принципы работы системы автофокуса.

Фокусировка – больной вопрос для большинства фотолюбителей (да и профессионалов тоже). Поверьте, или проверьте: любой фотографический форум убедит Вас, а тесты фотоаппаратов обязательно содержат раздел, посвященный исключительно работе автофокуса.

Обсуждения же автофокуса на фотографических форумах чаще всего заканчиваются взаимными обвинениями в невежестве или виртуальным хватанием за лацканы пиджака с криками «А ты кто такой?!». Подумалось мне заняться самообразованием и разобраться — на бытовом уровне, как работает автофокус в современных цифровых фотоаппаратах. Оказалось, что материалов в сети очень немного, а понятных человеку без специального образования – еще меньше. Результаты поисков и компилирование информации (спасибо ЛензРенталз!) изложены ниже.

В современных цифровых фотоаппаратах используются две системы автофокуса: контрастный автофокус и фазовый автофокус. Давайте начнем с более простой (и менее распространенной в «зеркалках») системы автофокуса: контрастного автофокуса.

Контрастный автофокус

Контрастный автофокус работает следующим образом: процессор оценивает гистограмму, получаемую с матрицы фотоаппарата, немного перемещает линзы объектива – смещая точку фокусировки, затем производит переоценку, чтобы увидеть, повысился или снизился контраст. Если контраст повысился, фотоаппарат продолжает смещать точку фокусировки в выбранном направлении, пока изображение не станет максимально контрастным. Если же контраст снизился, объективу дается указание смещать точку фокусировки в другую сторону. Процесс повторяется до достижения максимального контраста (что по существу означает продвижение точки фокусировки чуть дальше положения максимального контраста и возврат к точке, после которой контраст начал снижаться). «Сфокусированное» методом контрастного автофокуса изображение – это изображение с максимальным контрастом.

Если ваша камера показывает гистограмму в режиме Live View можно вручную фокусироваться по контрасту.

При контрастном автофокусе оценивается изображение с небольшого участка матрицы – используемого в качестве датчика и совпадающего с точкой фокусировки, выбранной фотографом. Это позволяет выбрать объект, на котором нужно сфокусироваться, и избавляет процессор фотоаппарата от необходимости оценивать контраст всего изображения – оценивается контраст только в выбранных точках автофокусировки.

 

Недостатки контрастного автофокуса

Основным недостатком контрастного автофокуса является его неторопливость. Многоходовый процесс «сдвиг точки фокусировки/линз объектива – оценка – сдвиг – оценка» требует времени, да и фотоаппарат может начать с перемещения точки фокусировки в неправильном направлении – потом нужно будет возвращаться. Из-за крайне невысокой скорости и невозможности следящей фокусировки, контрастный автофокус мало подходит для динамичных сюжетов. Медлительность усложняет даже съемку неподвижных объектов. Контрастный автофокус значительно более чем фазовый зависит от хорошего освещения, да и — что очевидно — требует хорошей контрастности объекта, на котором производится фокусировка.

 

Преимущества контрастного автофокуса

Есть у контрастного автофокуса и преимущества, благодаря которым он не только до сих пор используется в фотоаппаратах, но и увеличивает свое присутствие. Во-первых, система контрастного автофокуса проще. Она не требует дополнительных датчиков и микросхем, которые нужны для фазового автофокуса. Простота снижает стоимость и (а для многих цена важнее скорости) является основной причиной использования контрастного автофокуса в компактных цифровых фотоаппаратах. (Другая причина состоит в том, что глубина резкости у компактных фотоаппаратов изначально больше и требования к точности автофокуса существенно ниже).

Простота системы контрастного автофокуса уменьшает ее размер. Например, появившиеся недавно беззеркальные цифровые фотоаппараты со сменной оптикой стремятся к миниатюрности, а система контрастного автофокуса не требует «отводить» изображение в сторону от матрицы фотоаппарата: значит не нужны призмы, зеркала и линзы, необходимые для системы фазового автофокуса. Миниатюрность — одно из важнейших преимуществ беззеркальных фотоаппаратов со сменной оптикой — все они используют контрастный автофокус.

Второе преимущество состоит в том, что в системе контрастного автофокуса используется матрица фотоаппарата. Нет необходимости «отвода» пучка света через специальные призмы и зеркала на дополнительные датчики, которые могут быть неотюстированы по отношению к матрице фотоаппарата. При контрастной автофокусировке оценивается реальное изображение на матрице фотоаппарата, а не отдельное изображение, которое должно быть (а «должен» еще не значит, что так и есть) точно выверено на соответствие с матрицей.

Именно по этой причине контрастный автофокус обеспечивает более точную автофокусировку, чем фазовый. Подчеркну: «при использовании матрицы для контрастной фокусировки». В зеркальных фотоаппаратах Olympus и Sony для контрастного автофокуса в режиме Live View используется дополнительная, меньшая матрица, а значит — как и в любой системе, требующей юстировки — остается возможность неправильной юстировки.

В целом, система контрастного автофокуса проще, дешевле, меньше по размерам, и теоретически более точна, чем фазовый автофокус. Но она намного медленнее. Производители прилагают все усилия, чтобы ускорить контрастный автофокус, есть успехи, но в ближайшем будущем он будет оставаться более медленным.

Фазовый автофокус

Основные принципы

Систему фазового автофокуса (также известного как phase matching) предложила фирма Honeywell в 1970-х годах; впервые серийно ее использовали в фотоаппарате Minolta Maxxum 7000. Honeywell подала на Minolta иск за нарушение патентых прав и выиграла дело; так что производителям пришлось заплатить Honeywell за право использовать фазовую систему автофокуса.

Фазовый автофокус основан на принципе, согласно которому, исходящие/отраженные от точки, находящейся в фокусе, лучи будут в равной степени освещать противоположные стороны объектива («будут находиться в фазе»). Если объектив сфокусирован перед или позади этой точки, эти лучи света по-разному проходят через края объектива («находятся не в фазе»).

Большинство существующих систем фазового автофокуса используют зеркала, линзы или призмы (разделители пучка), чтобы разделить лучи, проходящие через противоположные края объектива на два луча; и вторичную систему линз, чтобы снова сфокусировать эти лучи на датчике автофокуса (как правило, CCD). Этот датчик определяет, куда падают лучи света проходящие через противоположные края объектива. Если точка находится в фокусе, лучи попадают на датчик на определенном расстоянии друг от друга. Если объектив сфокусирован ближе или дальше требуемой точки, расстояние между этими лучами будет меньше или больше. Много слов, давайте попробуем посмотреть на графическое отображение процесса — (рис. 1).

Рис. 1 Принцип работы фазового автофокуса

Сразу оговорюсь: описание и рисунок дают очень упрощенное объяснение принципа работы фазового автофокуса – для того лишь, чтобы получить представление о том, «как это работает». Физика и механика процесса, описание которых заняло бы не одну страницу, полную формул, цифр и других непонятностей, остались «за кадром».

 

На рисунке ясно видно, что процессор фотоаппарата в системе фазового автофокуса сразу определяет, сфокусирован объектив слишком близко или слишком далеко от объекта, так что один из недостатков контрастного автофокуса (камера не знает, в какую сторону смещать точку фокусировки) изначально отсутствует — вместо перемещения вперед и назад и определения в каком направлении лежит большая контрастность, в фазовом автофокусе процессор сразу видит, в какую сторону смещать точку фокусировки.

А дальше идет процесс. Каждый автофокусный объектив оснащен микропроцессором, сообщающим фотоаппарату о своем присутствии и состоянии, например, «Я объектив 50/1.4 и мой фокусирующий элемент находится в положении на 20% ближе, чем бесконечность» — или нечто подобное. Когда Вы нажимаете на кнопку затвора наполовину, происходит следующее:

  • Фотоаппарат считывает данные с датчика автофокуса, сверяется с массивом данных, содержащих сведения о свойствах автофокусных объективов этого производителя, делает некоторые расчеты и говорит объективу что-то вроде «Передвинь точку автофокуса вот настолько к бесконечности».

  • В объективе есть датчики и микросхемы, измеряющие либо количество тока, поданного на моторчик фокусировки, либо насколько передвинулся фокусирующий элемент. Объектив смещает фокусировочный элемент и посылает сигнал фотоаппарату «почти у цели».

  • Фотоаппарат перепроверяет данные с датчиков автофокуса, и отправляет сигнал объективу к более точной настройке; процесс точной фокусировки может повторяться несколько раз, пока объектив не сфокусируется «точно в цель». Если что-то идет не так, происходит печально известное «рысканье» объектива.

  • После фокусирования, фотоаппарат приказывает объективу зафиксировать фокус, и информирует фотографа (звуком и индикатором в видоискателе). Весь процесс занимает толику секунды. Очень быстро. 

Схема фазового автофокуса

 

Датчик автофокуса не может находиться перед матрицей, поэтому производители используют частично прозрачные области в зеркале, пропускающие свет на вторичное зеркало, от которого он и отражается на датчик автофокуса (рис. 2).

Рис. 2 Схема фазового автофокуса

Обычно датчик автофокуса располагается под основным зеркалом (рис. 3) вместе с датчиками экспозамера. Красной стрелкой показан датчик автофокуса фотоаппарата Canon EOS 5D. Изображение взято с сайта Canon, USA

Рис. 3 Расположение датчика автофокуса

Типы датчиков фазового автофокуса

Каждый датчик способен оценить лишь небольшую часть изображения. Горизонтальные датчики точнее работают с вертикальными деталями. В большинстве изображений вертикальные детали преобладают, поэтому горизонтальных датчиков больше. Есть и вертикальные датчики, как правило, расположенные крестообразно с горизонтальными (рис. 4). Некоторые фотоаппараты оборудованы даже диагональными датчиками фазового автофокуса.

Некоторые датчики автофокуса (почти всегда располагаются в центре), с помощью различных линз и размера самого датчика, достигают большей точности автофокуса, особенно при использовании светосильных объективов. Чаще всего они включаются в работу только при использовании объективов со светосилой f/2.8 или светлее. На рисунке 4, например, показано, что при использовании объектива f/2.8 будет использоваться крестообразный датчик, а для более темных объективов будет задействован лишь один менее точный датчик автофокуса.

Рис. 4 Крестообразный датчик автофокуса

В первых системах фазового автофокуса (и в некоторых современных фотоаппаратах среднего формата) был только один датчик в центре изображения. С ростом вычислительной мощности и инженерного мастерства добавлялись все новые и новые датчики. Сейчас у большинства фотоаппаратов их от семи/девяти и до 52. Можно – в зависимости от требований снимаемой сцены — выбрать один, все, или группу датчиков. Можно сообщить фотоаппарату какой датчик/датчики использовать.

 

Многочисленные датчики фазового автофокуса, совместно с процессором фотоаппарата, способны на замечательные вещи. Определяя, в каких датчиках движущийся объект находится в фокусе и как это изменяется – измеряя перемещение объекта и считывая показания через кратчайшие промежутки времени – фотоаппарат может предсказывать, где будет находиться движущийся объект через определенный промежуток времени. На этом основана работа следящего автофокуса.

Крестообразный датчик автофокуса

Влияние светосилы объектива

Независимо от типа датчика, автофокус будет более точным при использовании светосильных объективов. В процессе фокусировки фотоаппарат максимально открывает объектив, закрывая диафрагму до выбранного вами значения только в момент открытия шторок. Фазовый автофокус тем точнее, чем шире угол лучей света. На приведенной схеме угол лучей, полученных от объектива f/2.8 (синие линии), будет больше, чем от объектива f/4 (красные линии), которые в свою очередь больше, чем от объектива f/5.6 (желтые линии). При использовании объектива с максимальной диафрагмой f/8, только самые точные датчики способны работать, но фокусировка будет медленной и менее точной. Именно по этой причине прекращают автофокусироваться объективы f/5.6, когда мы пытаемся использовать телеконвертер, снижающий их максимальную светосилу до f/8 или f/11.

 

Преимущества фазового автофокуса

Основные преимущества фазового автофокуса мы уже упомянули:

  • он много быстрее контрастного — достаточно быстр для съемки движущихся объектов.

  • Фотоаппарат способен использовать группу датчиков для оценки движения объекта, что дает нам следящий/предикативный автофокус.

Есть и менее явные преимущества. Группы датчиков фазового автофокуса могут использоваться для «электронного ГРИП » – предварительной оценки глубины резкости. Некоторые фотоаппараты (правда, их немного) оснащены функцией автофокусной ловушки (trap autofocus) – они делают снимок в момент, когда что-то попадает в активную точку фокусировки. Если датчики обнаруживают движение в статической сцене, они могут сообщить о недопустимом шевелении фотоаппарата. Но – основное — скорость и следящий автофокус

 

Недостатки фазового автофокуса

Во-первых, система фазового автофокуса требует физической юстировки. Путь света к матрице фотоаппарата должен быть согласован с путем света к датчику автофокуса так, чтобы предмет, находящийся в фокусе на датчике автофокусировки был в фокусе и на матрице. Каждый объектив должен содержать микросхему, обеспечивающую обратную связь с фотоаппаратом и сообщающую ему информацию о точном положении фокусирующего элемента, о том, на какое расстояние элемент перемещается при подаче определенного тока на моторчик автофокуса. Все это должно быть точно согласовано и выверено таким образом, чтобы объектив смещал точку фокусировки именно туда, куда ему указал фотоаппарат, а фотоаппарат знал точное положение этой точки. Малейшая несогласованность приводит к неточной фокусировке.

Во-вторых, система требует программной настройки. Каждый фотоаппарат и объектив программируются производителем, в память вносится большое количество данных. Благодаря этим данным обеспечивается согласованная работа фотоаппарата и объектива, а точность автофокуса иногда может быть улучшена путем обновления прошивок. Такие обновления часто выпускаются вслед за появлением новых объективов.

Производители скрывают алгоритмы работы своих систем фазового автофокуса. Сторонние производители объективов вынуждены экспериментальным путем считывать и декодировать сигналы, которыми обмениваются фотоаппарат и объектив и на основе этих данных разрабатывать свои микропроцессоры и свои алгоритмы. Из-за этого точность автофокуса при использовании объективов сторонних производителей может быть ниже. Изменение алгоритмов производителями фотоаппаратов приводит к тому, что автофокус на объективах сторонних производителей отказывается работать (их нужно перепрограммировать, как недавно произошло с Sigma AF 120-300/2.8 и Nikon D3X).

 

Как уже упоминалось, светосила объектива влияет на точность фазового автофокуса. Светосильные объективы способны фокусироваться в более сложных условиях. Обычно зависимость от светосилы не вызывает проблем, потому что у темных объективов большая глубина резкости. Однако, есть значения максимальной светосилы (как правило, f/5.6 или f/8), когда фазовый автофокус просто отказывается работать. (Помните, речь идет о максимальной светосиле объектива — фотоаппарат автоматически полностью открывает диафрагму объектива в процессе фокусировки, поэтому установленное значение не оказывает влияние на автофокус, если максимальная диафрагма объектива соответствует возможностям фотоаппарата).

 

Поскольку свет попадает на датчики автофокуса только когда зеркало опущено, они перестают работать в момент снимка, и не начинают работать до того, пока зеркало не вернется в исходное положение. Именно поэтому фазовый автофокус не работает в режиме Live View, а следящий автофокус может ошибаться при серийной съемке.

 

Есть и другие проблемки, которые мы не замечаем. Линейные поляризационные фильтры мешают фазовому автофокусу. Линейных поляриков сейчас осталось немного, но бывает, что купив его «по-дешевке» владелец потом удивляется неточности автофокуса. Фазовый автофокус может просто «сдуться» на некоторых сюжетах (типа шахматной доски или решетки), а контрастный легко справляется с ними.

Live View:

Я выделил режим Live View, потому что именно он заставляет производителей работать над усовершенствованием контрастного автофокуса и над созданием гибридных систем. Как уже упоминалось, контрастный автофокус обладает определенными преимуществами, а преодоление его ограничений будет на пользу всем фотографирующим.

Olympus и Sony уже создали системы, которые разделяют пучок света, отправляя часть в видоискатель, а часть – на дополнительный датчик изображения. Такая система позволяет пользоваться фазовым автофокусом даже в режиме Live View. Но и риск неточной фокусировки возрастает, ведь используется не матрица, а вспомогательный датчик.

 

Canon описал систему, которая использует фазовый автофокус на начальном этапе, а затем тонко подстраивает фокусировку при помощи контрастного автофокуса.

Nikon кажется, подал заявку на патентование принципа, когда определенные пиксели матрицы фотоаппарата будут использоваться в качестве датчиков фазового автофокуса. Это – по-моему – будет просто революцией.

FujiFilm уже выпустил линейку компактных цифровых фотоаппаратов с гибридной системой автофокуса.

 

Поживем, увидим. Но очевидно, что впервые за последние годы изменения систем автофокуса могут быть революционным, а не эволюционными. Что – согласитесь – таит для фотолюбителей много интересного и захватывающего.

 

 

август 2010 года

www.vlador.com

Как пользоваться автофокусом

© 2014 Vasili-photo.com

Автофокус

Автофокус или автоматическая фокусировка для большинства фотографических сюжетов является более предпочтительным решением по сравнению с ручной фокусировкой. В умелых руках автофокус осуществляет наводку на резкость точнее, а, главное, быстрее, чем среднестатистический фотограф. Однако автофокус далеко не так прост, как это может показаться начинающему фотолюбителю, и правильное его использование весьма далеко от принципа point-and-shoot. Существует ряд тонкостей, которые следует усвоить, если вы хотите, чтобы автофокус перестал жить своей собственной жизнью и начал делать то, что вы от него хотите.

Я настоятельно рекомендую вам перечитать тот раздел инструкции к вашему фотоаппарату, который посвящён автофокусу – это одни из самых полезных страниц во всём руководстве, и информацией, содержащейся там, не стоит пренебрегать. Как минимум, вы должны представлять, какие органы управления отвечают за переключение между различными режимами работы автофокуса и выбор нужной вам фокусировочной точки.

Режимы автофокуса

Режимы автофокуса

Большинство фотоаппаратов имеют два основных режима автофокуса: одиночный и следящий.

Одиночный или покадровый автофокус (в камерах Nikon он называется Single Servo AF (S), а в аппаратах Canon – One-shot AF) предназначен для съёмки неподвижных сцен, таких как, например, большинство пейзажей. При нажатии кнопки спуска наполовину камера фокусируется на объекте, расположенном в пределах заранее выбранной фокусировочной точки, после чего фокус блокируется, позволяя вам изменить компоновку кадра (не меняя, разумеется, расстояния до объекта) и лишь затем спустить затвор.

Следует понимать, что на самом деле объектив фокусируется не на объекте, как таковом, а на определённой дистанции. Таким образом, если я позволю камере навестись на некий объект, расположенный на расстоянии 5 метров от меня, то и все прочие объекты, удалённые от меня на 5 метров, т.е. лежащие в фокальной плоскости, выйдут резкими, и пока фокус заблокирован, а расстояние до объекта не меняется, я волен вертеть камерой в угоду композиции, не опасаясь сбить фокусировку.

Этот метод хорош, когда расстояние до снимаемого объекта сравнительно велико и измеряется как минимум метрами. На близких же дистанциях, неизбежных при макросъёмке, перекомпоновка кадра, влекущая за собой изменение расстояния всего в пару сантиметров, может вылиться в заметное смещение фокуса относительно объекта, что будет особенно критичным при малой глубине резкости.

Следящий или непрерывный автофокус (у Nikon – Continuous Servo AF (C), у Canon – AI Servo AF) незаменим при съёмке движущихся объектов, таких как спортсмены или животные. Пока кнопка спуска затвора остаётся полунажатой, автофокусировка продолжает работать непрерывно, удерживая объект в фокусе, даже когда дистанция между ним и вами изменяется. Блокировки фокуса при этом естественно не происходит, поскольку линзы объектива находятся в постоянном движении, отслеживая перемещения объекта.

Очевидно, что при использовании следящего автофокуса вы не можете произвольно менять компоновку кадра, т.к. если активная фокусировочная точка покинет снимаемый объект, то и фокус сместится с объекта на фон вслед за точкой. Для того, чтобы заблокировать фокус в следящем режиме автофокуса, следует использовать фокусировку задней кнопкой.

***

Промежуточный или автоматический режим (AF-A или AI Focus AF), который сам решает – использовать ли одиночный или следящий автофокус, – не внушает мне большого доверия, поскольку он не всегда в состоянии отличить движение камеры от движения объекта.

Точки фокусировки

Выбор точек фокусировки

Количество фокусировочных точек в современных фотоаппаратах может достигать полусотни и даже больше. Изобилие точек фокусировки это, конечно, приятно, и порою полезно, но даже если ваша камера имеет небольшое по современным меркам число точек (девять или одинадцать), вам всё равно хватит их с головой.

При съёмке неподвижных объектов я использую только одну единственную точку, чаще всего – центральную. Одна точка позволяет мне точнейшим образом сфокусироваться на нужном мне объекте или даже на отдельной его детали, а затем, заблокировав фокус, перекомпоновать кадр так, как мне того хочется.

Точки автофокуса

Автоматический выбор точек фокусировки весьма удобен, когда вы спешите, но следует помнить, что камера обычно старается сфокусироваться на ближайшем к ней объекте или же на области с наибольшим контрастом, а это далеко не всегда то, чего вы хотите. Автофокус не может знать, какой из объектов является наиболее важным и требующим безусловной резкости, а какой второстепенен, и, следовательно, может остаться не в фокусе, а потому не ленитесь самостоятельно выбрать фокусировочную точку, в случае, если автоматика камеры с этим не справляется.

Я использую автовыбор фокусировочной точки только в следующих ситуациях:

  • Объект движется очень быстро, и у меня попросту нет времени выбирать точки – камера сделает это куда проворнее. Это справедливо и тогда, когда движется сам фотограф, находясь, к примеру, на борту моторной лодки.
  • Единственный объект съёмки хорошо выделяется на сравнительно монотонном фоне, как, например, птица, летящая по небу, и у автофокуса нет шансов навестись на что-нибудь постороннее.
  • Все элементы снимаемой сцены находятся на одинаково большом удалении от фотоаппарата, как, например, при съёмке с высокой горы, и разницей между расстоянием до отдельных объектов можно пренебречь.
  • Съёмка текстур, когда снимаемая поверхность размещается в фокальной плоскости, т.е. строго перпендикулярно оптической оси объектива.
  • Фотоаппарат передаётся в руки человека, не имеющего понятия об автофокусе.

Во всех остальных случаях я пользуюсь единственной фокусировочной точкой.

Следует также помнить, что форма фокусировочных точек в видоискателе фотоаппарата лишь приблизительно обозначает истинные форму и габариты датчиков автофокуса.

Приоритет фокуса или спуска

Приоритет фокуса (focus priority) означает, что при полном нажатии кнопки спуска затвора, снимок будет сделан, только если объект съёмки находится в фокусе. В противном случае затвор не сработает.

Если же включен приоритет спуска (release priority), то снимок будет сделан, когда бы вы ни нажали на кнопку, вне зависимости от того, осуществлена наводка на резкость или нет.

Обычно, согласно заводским настройкам фотоаппарата, в режиме одиночного автофокуса используется приоритет фокуса, а в режиме следящего автофокуса – приоритет спуска, но вы вольны изменять приоритеты по своему усмотрению.

Различия между контрастным и фазовым автофокусом

В цифровых фотоаппаратах используются две наиболее распространённые системы автофокуса: фазовый автофокус и контрастный. Разберёмся, чем они отличаются друг от друга.

Контрастный автофокус

Контрастный автофокус используется в компактных камерах, а также в зеркальных аппаратах в режиме Live View.

Контрастный автофокус не нуждается в каких-либо дополнительных фокусировочных датчиках и для фокусировки использует непосредственно матрицу фотоаппарата. Изображение, поступающее с матрицы, анализируется процессором камеры на предмет изменения контраста. При возникновении необходимости выполнить наводку на резкость процессор даёт команду фокусировочному мотору слегка переместить линзы объектива в произвольном направлении. Если контраст изображения при этом снизился, направление изменяется на противоположное. Если контраст повысился, движение линз продолжается в исходном направлении до тех пор, пока контраст снова не начнёт уменьшаться. В этот момент автофокус возвращает объектив на шаг назад, т.е. в то положение, в котором контраст был максимальным, после чего фокусировка считается завершённой.

В силу того, что контрастный автофокус не знает, насколько и в какую сторону следует переместить точку фокуса, он вынужден действовать наощупь, ориентируясь исключительно на изменение контраста, и, как следствие, совершать множество лишних движений. Именно поэтому основным недостатком контрастного автофокуса является низкая скорость фокусировки, делающая его совершенно непригодным для съёмки подвижных объектов.

Из преимуществ контрастного автофокуса следует отметить простоту конструкции, точность и возможность сфокусироваться практически в любой точке кадра.

Фазовый автофокус

Фазовый автофокус используется в зеркальных камерах, как в плёночных, так и в цифровых. Помимо основного зеркала, необходимого для направления изображения в видоискатель, зеркальная камера снабжается также небольшим дополнительным зеркалом, которое переотражает часть света на модуль фазового автофокуса. Всякий луч света, проходя через специальную оптическую систему, состоящую из светоделительной призмы и микролинз, разделяется на два луча, каждый из которых направляются затем непосредственно на датчики автофокуса. В случае точной наводки на резкость лучи должны падать на датчики на строго определённом расстоянии друг от друга. Если расстояние между лучами меньше эталона, это указывает на то, что объектив сфокусирован ближе, чем нужно (фронт-фокус), если расстояние больше – объектив сфокусирован дальше (бэк-фокус). Величина сдвига говорит о том, насколько далёк объектив от идеального фокуса. Таким образом, фазовый автофокус сразу предоставляет процессору информацию о том, в фокусе ли объект съёмки, а если нет, то куда и насколько нужно сместить фокусировочные линзы объектива. Это позволяет осуществить наводку на резкость одним быстрым движением.

Фазовый автофокус: фронт-фокус Фазовый автофокус: фронт-фокус Фазовый автофокус: фронт-фокус

Датчики фазового автофокуса бывают линейными и крестообразными. Линейные датчики в свою очередь делятся на горизонтальные и вертикальные. Горизонтальные датчики фокусировки чувствительны к вертикальным деталям (например, стволы деревьев), а вертикальные датчики – к горизонтальным деталям (например, линия горизонта). Крестообразные фокусировочные датчики универсальны и восприимчивы к деталям, ориентированным в любом направлении. Узнать, какие именно датчики автофокуса являются крестообразными, а какие линейными, можно из руководства к вашей камере. Наиболее чувствительный датчик всегда расположен в центре кадра.

Скорость фокусировки – главное преимущество фазового автофокуса, делающее его незаменимым при съёмке динамичных сюжетов. Основными же недостатками являются сложность и громоздкость системы автофокуса, необходимость тщательной юстировки всех её компонентов, меньшая точность по сравнению с контрастным автофокусом, ограниченное число фокусировочных точек, а также невозможность использовать классический фазовый автофокус в режиме Live View.

Гибридный автофокус

Попытки совместить преимущества фазового и контрастного автофокуса привели к появлению гибридных систем, которые используются во многих беззеркальных и некоторых зеркальных камерах.

Суть гибридного автофокуса заключается в том, что фазовые датчики интегрированы прямо в матрицу фотоаппарата. Фазовый автофокус обеспечивает первичную быструю наводку на резкость, которая затем корректируется за счёт анализа контраста изображения. При этом вся система весьма компактна и не требует механической юстировки.

Что ещё влияет на точность автофокуса?

Светосила

Точность автофокуса напрямую зависит от светосилы объектива. Используемый в современных объективах механизм прыгающей диафрагмы подразумевает, что экспозамер и наводка на резкость осуществляются при полностью открытой диафрагме, которая автоматически прикрывается до выбранного значения лишь непосредственно в момент спуска затвора. Чем больше максимальное относительное отверстие объектива, тем больше света попадает на датчики автофокуса в процессе фокусировки. За счёт того, что при большей светосиле лучи света проходят дальше от оптической оси объектива, они падают на датчики под большим углом друг к другу, что облегчает определение разницы фаз. Самые точные датчики фазового автофокуса расчитаны на работу при светосиле от f/2.8 и выше, а при светосиле ниже f/8 перестают работать любые датчики. Кроме того, большая светосила обеспечивает малую глубину резко изображаемого пространства, что опять-таки повышает точность фокусировки, поскольку отклонения от идеального фокуса становятся более очевидными.

Фокусное расстояние

Чем больше фокусное расстояние объектива, тем меньше глубина резкости. Казалось бы, это должно обеспечить более точную работу автофокуса с телеобъективами. Точность-то действительно повышается, но вместе с тем за счёт исчезающе малой глубины резкости любой промах автофокуса оказывается гораздо более заметным именно при использовании телеобъективов, и в действительности попасть в фокус с телеобъективом значительно сложнее, чем с объективом, имеющим небольшое фокусное расстояние. На практике широкоугольные объективы гораздо более толерантны к ошибкам автофокуса.

Детализация

Датчики автофокуса нуждаются в ясно различимых, контрастных деталях, по которым можно было бы выполнить наводку на резкость. Так, если объект имеет чёткие контуры или рельефную фактуру, автофокус прекрасно справится со своей задачей, а вот на плоских, монотонных поверхностях ему будет попросту не за что зацепиться.

Освещённость

Чем ярче освещена сцена, тем точнее работает автофокус. При падении освещённости снижается и уровень контраста, подлежащий оценке, что сильно затрудняет фокусировку. Когда яркость сцены составляет LV 1 (см. «Световые и экспозиционные числа»), автофокус работает из рук вон плохо, а при LV –2 и ниже пользоваться автофокусом практически невозможно и фокусироваться приходится исключительно вручную.

Фотограф

Основной фактор, лимитирующий точность автофокуса – это ваше умение им пользоваться. Никакие высокочувствительные датчики и сверхбыстрые фокусировочные моторы не заменят мастерства фотографа. Без должного навыка даже самая совершенная система автофокуса будет постоянно промахиваться.

Самое главное в использовании автофокуса – это регулярная практика. Вдумчивый подход к работе автоматики позволит вам фокусироваться быстро, точно и не без излишнего вольнодумства со стороны камеры.

vasili-photo.com

| Фокус-покус – автофокус Kaddr.com

На заре своего появления системы автоматической фокусировки действительно являлись таким себе фокусом-покусом. Это сейчас мы не представляем себе жизнь без автофокуса, а ведь совсем недавно все пользовались исключительно ручками и даже не предполагали о том, что автоматика сможет чётко зацепить объект съёмки.

Впервые об автофокусе заговорили в 70-х годах прошлого века. Тогда отличилась немецкая компания Leica, которая разработала и первый автофокусный объектив, и представила в 1976 г. первую фотокамеру, оснащённую системой автоматической фокусировки. Ею стала Leica Correfot, показанная в качестве прототипа на выставке Photokina-1976.

Автофокус

Но производить автофокусные системы немецкая компания не спешила и продала технологию компании Minolta, которая благодаря эффективному внедрению автофокуса в свои зеркалки к середине 1980-х гг. стремительно вырвалась в лидеры по продажам фототехники. Параллельно разработкой систем автоматической фокусировки занимались другие корпорации (Canon, Seiko, Polaroid, Pentax и т.п.) и технология вышла в массы.

Сильно вдаваться в технические подробности работы систем автоматической фокусировки мы пока не будем. Но “на пальцах” попробуем рассказать о том, как же они функционируют.

На сегодняшний день существует два основных вида автофокуса: фазовый и контрастный, а также их симбиоз, который называется гибридным.

Фазовый автофокус

Этот вид фокусировки во всю используется в зеркалках. В его основу положен принцип разности фаз светового потока, который поступает в объектив. Разницу определяют специальные датчики, которые размещаются в непосредственной близости от матрицы фотокамеры.

Автофокус

Принцип действия системы фазовой автофокусировки наглядно продемонстрирован на картинке ниже. Световой поток поступает через противоположные края объектива на основное зеркало, где разделяется на части: часть уходит к видоискателю, а ещё часть – непосредственно к дополнительному зеркалу, которое отбивает лучи на датчики фокусировки. Если световые лучи после прохождения зеркала и фокусировочной линзы сфокусируются в одной точке, значит, объект съёмки находится в фокусе. Если объектив сфокусирован ближе или дальше объекта съёмки, расстояние между лучами соответственно будет меньше или больше. В этом случае в работу включается процессор, который вычисляет направление и величину, на которую нужно сдвинуть фокусировочную линзу.

Автофокус

Даже невооружённым глазом прослеживается прямая зависимость работы автофокуса от светосилы объектива. И действительно, чем больше света поступает на переднюю линзу объектива, тем больше его будет отбито и тем лучше сработают датчики автоматической фокусировки. При этом всё равно, на сколько вы прикроете диафрагму – она закроется до заданного значения только в момент спуска затвора, а в процессе фокусировки диафрагма будет открыта по максимуму. Т.е. имея в своём арсенале объектив со светосилой f/1.2-1.4, можно рассчитывать на более высокую скорость и точность фокусировки. С другой стороны, это нивелируется тем, что более светосильные объективы имеют более сложную и массивную систему линз, а значит, весь этот механизм мотору сложнее ворочать. Кроме того, большая светосила подразумевает гораздо меньшую глубину резкости, в которую нужно фазовым датчикам попасть. Яркий тому пример – один из самых медленных (если не самый медленный) объектив у Canon – EF 85mm f/1.2L II USM.

На следующей иллюстрации наглядно показаны такие явления, как бэк-фокус и фронт-фокус:

Автофокус

  • фокус ближе – бэк-фокус;
  • фокус дальше – фронт-фокус.

Сами фазовые датчики могут быть линейными (горизонтальными и вертикальными) и крестовыми (в т.ч. двойными крестовыми). Остановимся на них подробнее в ближайших материалах.

Основные плюсы:Основные минусы:
отличная скорость фокусировкинеобходимость очень точной юстировки
эффективная работа в следящем режименевозможность работы в режиме LiveView

Контрастный автофокус

Этот метод фокусировки вовсю используется в компактах и беззеркалках. Не стесняются ставить контрастные датчики и в зеркалки – они обеспечивают наводку на резкость в режиме LiveView, когда фазовые датчики работать не могут.

В основе работы системы контрастной автофокусировки лежит принцип сравнения контраста изображения, которое поступает на матрицу фотоаппарата. Процессор фотокамеры анализирует гистограмму и смещает линзы объектива, чтобы посмотреть, насколько изменится при этом контраст. Если уровень контраста пойдёт вниз – точка фокусировки начнёт смещаться в обратную сторону. Если контраст повысится – точка фокусировки продолжит своё смещение в данную сторону, пока не удастся достичь максимального значения контраста. Т.е. процесс продолжается до тех пор, пока точка фокусировки не достигнет максимального контраста и не вернётся к точке, после которой его уровень начал снижаться. В этом случае объект съёмки и будет сфокусирован. Большое преимущество контрастной фокусировки над фазовой – в том, что с ней не бывает бэк- и фронт- фокуса.

Для просмотра наведите курсор мыши в правый верхний угол и покрутите ползунок вперёд/назад (визуализация – http://graphics.stanford.edu/courses/cs178/applets/autofocusCD.html)

Основные плюсы:Основные минусы:
простота конструкцииневысокая скорость работы
точность и аккуратностьневозможность использования автофокуса в следящем режиме

Гибридный автофокус

На сегодняшний день данный вид систем автоматической фокусировки становится всё популярнее. И не зря – он объединяет в себе преимущества обеих систем и нивелирует их недостатки.

Работает он примерно следующим образом: фазовые датчики, которые расположены непосредственно на матрице фотокамеры, обеспечивают первичную наводку на резкость. В дальнейшем подключаются контрастные датчики, которые корректируют разность контраста изображения и окончательно фокусируют камеру на объекте съёмки.

Автофокус

Пожалуй, одно из главных преимуществ гибридных систем автоматической фокусировки – отсутствие бэк- и фронт-фокуса. Это объясняется тем, что наводка на резкость происходит непосредственно на матрице фотоаппарата. Ещё один немаловажный плюс – компактные размеры гибридной системы автофокуса и отсутствие необходимости юстировки сего механизма. Но есть и ложка дёгтя – по скорости работы в следящем режиме гибридный автофокус всё ещё не дотягивает до фазового.

Основные плюсы:Основные минусы:
компактные размеры и отсутствие необходимости юстировкиневысокая скорость в следящем режиме (в сравнении с фазовым методом)
отсутствие явлений бэк- и фронт-фокуса

Если хотите более подробно узнать о работе систем автоматической фокусировки (с формулами и расчётами), отписывайтесь в комментариях. Если наберётся достаточное количество желающих, мы обязательно напишем отдельный материал на эту тему.

kaddr.com

Системы автофокуса в фотоаппарате

В 1970 фирма Leica совершила небольшую революцию в технологии производства фототехники, придумав систему автоматической фокусировки объектива на объект съёмки. За прошедшие годы мы настолько привыкли к этому изобретению, что считаем его само собой разумеющимся и недоумеваем, не найдя его в гаджете. На сегодняшний день распространение получили две системы — контрастная, основанная на измерении контраста изображения и фазовая, сравнивающая противофазные части пучка, формирующего точку. А совсем недавно, буквально на наших глазах, появилась новая система автофокуса — гибридная, объединяющая скорость фазового автофокуса с точностью контрастного (как заявляет рекламный слоган Samsung).

Контрастный автофокус.

Принцип действия основан на вычислении микропроцессором наибольшего контраста между деталями изображения на матрице. Далее программа заставляет двигаться линзы объектива вперед-назад до тех пор, пока не будет найден максимум контраста (максимум разницы яркостей). Примерно также мы и фокусируемся вручную.

Минусы данной системы — низкая скорость, невозможность следящей фокусировки, невысокая точность. Ведь блоку линз придётся сначала пройти через точку максимума, а затем вернуться назад, и, возможно, повторить действие.

Плюсы — дешевизна, отсутствие сложных деталей и необходимости настройки оптической системы, независимость от светосилы объектива, возможность применения в любой системе: в компактных камерах, беззеркалках и видеокамерах.

Фазовый автофокус.

Думаю, что не буду приводить здесь очень сложную механическую и оптическую схему фазового автофокуса, отослав интересующихся в интернетные глубины (вот, например, хорошее начало). Отмечу лишь, что система фазового автофокуса требует наличия особых датчиков, вычисляющих разность фаз светового потока, разделённого специальными зеркалами. Первые аппараты имели лишь один такой датчик — горизонтальный, дальнейший прогресс сделал его крестовым (фактически объединяющим два датчика — горизонтальный и вертикальный), затем высокоточным, потом количество датчиков стало увеличиваться.

Двойной крестообразный датчик

Нынешние зеркалки даже начального уровня могут похвастаться 9-11 крестовыми датчиками, а в профессиональных моделях их число доходит до 60.

Главным минусом системы фазового автофокуса является его сложность, необходимость точной юстировки и настройки, в том числе программной, а следовательно — цена.

Модуль автофокуса Canon 5D Mark III

Плюсы — максимальное быстродействие, так как величина и направление перемещения объектива известны сразу. Благодаря многочисленным датчикам и мощному процессору — возможность слежения за объектом съёмки и даже предсказание его перемещения в кадре.

Гибридный автофокус.

С недавних пор во многих зеркальных камерах появился интересный режим съёмки — LiveView, позволяющий делать снимки или проводить видеосъёмку, наблюдая картинку на мониторе в режиме реального времени. Зеркало при этом поднято, поэтому автофокус может быть использован только контрастный. Возможен также смешанный режим автофокуса — при полунажатии на кнопку спуска включается фазовый режим, а после фокусировки камера вновь переключается в режим LiveView. Понятно, что подобные компромиссы заставляют конструкторов придумывать более интересные решения.

В некоторых современных аппаратах — как зеркальных (например, Canon 650D, Canon 70D), так и беззеркальных (Nikon 1, Samsung NX300) инженерам удалось совместить «фазовую» систему фокусировки с «контрастной» — датчики определения фазы встроили прямо в матрицу.

Такая «псевдо»фазовая система работает менее точно и быстро, чем настоящая, и на этом, видимо её минусы заканчиваются, и начинаются плюсы. Относительная «простота» конструкции — нет необходимости в сложных оптических и механических схемах. Вся работа ложится на плечи матрицы и процессора, а его мощность растёт все мы знаем с какой скоростью, поэтому цена этого решения будет только снижаться..

Одним из неочевидных плюсов гибридного автофокуса является отсутствие фронт- и бэкфокуса объектива, так как наводка на резкость происходит непосредственно на матрице.

Более того — очень похоже на то, что на развитие именно гибридного способа фокусировки будут брошены основные силы инженеров в ближайшие 10-15 лет, а может, и меньше. Если прогноз верен, то фактически это означает отказ от зеркального аппарата как от класса.

levfoto.ru

Что такое гибридный автофокус в смартфоне?

Гибридный автофокус считается важным показателем при выборе смартфона для получения качественных фотографий с минимальными затратами времени. Такой метод фокусировки может разниться в зависимости от моделей, имеющих свои плюсы и минусы.

История появления

Раньше идея создания гибридного автофокуса заключалась в сочетании активного и пассивного вариантов. Первый анализирует световые пучки, которые улавливаются камерой, а второй измеряет расстояние до объекта с помощью ультразвуковых или инфракрасных локаторов. Позднее было решено комбинировать фазовую и контрастную технологию. Изначально она появилась в зеркальных камерах, но теперь все чаще ее устанавливают в современные смартфоны, потому что она в разы превосходит контрастный АФ.

Контрастно-фазовый

Аппарат с таким типом фокусировки камеры позволяет сфотографировать достаточно быстро с минимальными потерями в качестве при недостаточном освещении. Фотосенсор включает в себя несколько десятков датчиков и фазовые детекторы.

Благодаря им фокусировка происходит быстро, но не всегда точно. Контрастный компонент доводит точность до оптимального значения, плюс для него не требуется значительная светосила.

Обычно контрастно-фазовый автофокус применяется в современных моделях, поддерживающих соответствующее программное обеспечение для оптимального функционирования.

Фазово-лазерный

В таком автофокусе каждая часть отвечает за свой функционал и работает отдельно от другой. При съёмке объекта с небольшого расстояния камера применяет лазерный автофокус, а при значительном расстоянии устройство само переключается на режим PDAF.

Сочетание разных типов автофокуса требует установки в смартфон соответствующей начинки, которая делает устройство более дорогим. Поэтому обычно такой вариант используется в моделях, предназначенных для активной фотосъемки.

Продвинутый гибридный автофокус

Помимо высокой точности и скорости фокусировки, некоторым производителям удалось добиться и ещё больших улучшений в работе камеры. Так, например, у Samsung есть смартфоны, в которых установлен предиктивный гибридный автофокус, который как бы захватывает определенный объект и следит за ним по ходу движения. В обычной жизни люди чаще статично позируют, но такая функция может быть особенно полезна при съёмке животных, детей, спортивных соревнований или выступлений. Кроме того, такая технология решает распространенную проблему в макросъемке, когда незначительный порыв ветра портит кадр.

Самый быстрый автофокус

Выбирая смартфон с возможностью быстро делать качественные кадры, стоит обратить внимание на пятёрку лучших в этом деле.

  • Xiaomi redmi Note 2 фокусируется за 0,1 секунды. При этом и остальные характеристики не подкачали: экран 5.5 дюймов, две камеры на 13 и 5 мегапикселей, процессор helio X10.
  • Apple iPhone 6 лишь немного отстаёт от предыдущего аппарата – в некоторых случаях фокусировка может занять 0,3 секунды.
  • Радует скоростью съемки и Samsung Galaxy Note 5. Кстати, именно этот производитель впервые использовал автофокус смартфоне Galaxy S5. Если раньше скорость автофокуса не впечатляла, то сейчас она доходит 0,1 секунды.
  • Среди бюджетных устройств стоит отметить Sony Xperia M5 с 5-дюймовым экраном, 3 Гб оперативной памяти и основной камерой 21 Мп. Производитель обещает фокусировку за 0,25 секунды.
  • Впечатляют и результаты тестов Motorola Moto X Style с фронтальной камерой 13 Мп, основной на 21 Мп и дисплеем 5,7 дюймов.

Гибридный автофокус на смартфоне – гарантия быстрой и качественной съемки. Отчасти это можно сказать и о контрастном АФ, но только если владелец не планирует активно снимать каждый день. В противном случае лучше присмотреться к продвинутым моделям.

Гибридный автофокус (1 видео)

 

Гибридный автофокус в смартфоне (10 фото)

mobcompany.info

История фокуса | Журнал Популярная Механика

Между нажатием на кнопку спуска современной фотокамеры и коротким «бип», означающим завершение фокусировки, проходят десятые доли секунды. В этом коротком мгновении — 40 лет эволюции систем автофокусировки.

Первые десятилетия фотографии камеры были большими и представляли собой простую, но громоздкую конструкцию в виде «гармошки», соединяющей объектив и кассетную часть с фотопластинкой. Перед съемкой на место фотопластинки вставлялось матовое стекло (фокусировочный экран), и фотограф вручную двигал объектив (обычно однолинзовый) для фокусировки изображения, накрывшись темным покрывалом для повышения яркости и контраста. Процесс этот был небыстрый, но и спешить особо было некуда: светочувствительность фотопластинок в то время была низкой, выдержка составляла минуты, так что снимали в основном статичные сцены — пейзажи, натюрморты и портреты людей, которым приходилось для этого сидеть неподвижно.

Фокусировка по дальномеру Фокусировка по дальномеру

Ручная работа

К началу XX века чувствительность фотоматериалов увеличилась, формат уменьшился, камеры стали намного компактнее и удобнее, но сфокусировать объектив по изображению на маленьком фокусировочном экране стало сложно даже с помощью лупы. Эту проблему можно было решить несколькими путями. Во‑первых, сфокусировать объектив на гиперфокальном расстоянии, так, чтобы большая часть объектов в кадре изображалась резко. Во‑вторых, разметить шкалу расстояний на объективе и наводить резкость, выставляя нужные значения «на глаз». И, в-третьих, можно было применить принципиально новое решение, оснастив камеры устройством для измерения дистанции — дальномером. Этот несложный оптический прибор состоял из светоделительной призмы и поворотного зеркала, разнесенных на определенное расстояние (база). Фотограф, глядя в окошко дальномера, поворачивал зеркало до тех пор, пока изображения не совмещались. С помощью триангуляции, исходя из угла поворота и базы, можно было найти расстояние до объекта съемки и выставить эту дистанцию на объективе (вручную). Такими устройствами камеры начали оснащать с начала XX века, а в 1916 году в модели 3A Autographic Kodak Special конструкторы впервые механически объединили измерение расстояния с одновременной фокусировкой объектива. Настоящую популярность это приспособление получило благодаря компании Leica, которая начала снабжать свои камеры дальномерами начиная с модели Leica I (1925), — собственно, такие камеры и стали называться дальномерными.

Фокусировка по контрасту Фокусировка по контрасту

Убрать раздвоение

В 1976 году на выставке Photokina компания Leica представила фотокамеру с системой Correfot (которую она разрабатывала с 1960 года) — первой системой автофокусировки в мире. По одной из легенд, несмотря на интерес публики, компания отказалась от ее выпуска, «потому что клиенты уже знают, как правильно фокусировать объектив». На самом деле система была просто слишком прожорлива (комплекта из шести батареек хватало менее чем на час съемок) и в целом «сырая». Поэтому первой серийной автофокусной камерой стала в 1977 году Konica C 35 AF, оснащенная системой Visitronic компании Honeywell. Система эта базировалась на классическом дальномере и триангуляции, только два изображения сводил вместе не сам фотограф, а электромеханическая автоматика, сравнивая сигналы с двух ПЗС-матриц.

Фазовая фокусировка Фазовая фокусировка

Компания Canon пошла немного другим путем, решив обойтись без сложной электромеханики. В Canon AF35M (1977) появился активный автофокус, представлявший собой оптоэлектронную версию классического дальномера: светодиод излучал инфракрасный импульс, а расстояние определялось по углу его отражения от объекта, измеренного с помощью ПЗС-датчика. В следующей модели, Canon AF35ML (1981), уже использовалась пассивная автофокусировка, основанная на «твердотельной триангуляции»: никаких движущихся частей, а «сведение» изображений осуществлялось электронным способом — по разности сигналов на двух ПЗС-матрицах.

Обратная сторона Лужкова: мэр и 10 его изобретений

Обратная сторона Лужкова: мэр и 10 его изобретений В первых дальномерных камерах фотограф совмещал изображения, считывал расстояние и выставлял полученное значение на фокусировочной шкале объектива. В камере 3A Autographic Kodak Special эти процедуры были объединены в одну.

Сдвиг по фазе

Первой автофокусной зеркальной камерой стала Minolta Maxxum 7000 (1985). В этой модели использовалась система фазовой автофокусировки (AF) через объектив (Through The Lens — TTL), которая широко применяется и сейчас. Принцип ее работы основан на том, что лучи, проходящие через две половины объектива, отражаются зеркалом и фокусируются в двух разных точках на датчике АФ — двух ПЗС-линейках. Расстояние между этими точками для идеальной фокусировки точно известно, и если измеренная дистанция между пиками не совпадает с этим значением, система управления начинает двигать объектив в нужном направлении до тех пор, пока пики не окажутся на нужных местах. В реальной жизни, конечно, все намного сложнее — изображение представляет собой не точку, может быть расположено не на оптической оси и т. п. Эти проблемы решаются введением различных масок и дополнительных конденсорных линз, но принцип тот же.

Обратная сторона Лужкова: мэр и 10 его изобретений Автоматические дальномеры и настоящая АФ Konica C35 AF была оснащена электромеханическим дальномером с двумя ПЗС-датчиками. Сигналы с датчиков сравнивались, их совпадение означало точную фокусировку.

Фазовый автофокус очень быстрый (система сразу знает, в каком направлении нужно двигать объектив, и благодаря этому даже может отслеживать движение объекта в кадре), не требует большой вычислительной мощности и не имеет движущихся частей. Основной недостаток этой системы — ее неуверенная работа при низком освещении, а также то, что она работает только при опущенном зеркале: в момент съемки зеркало поднимается, и весь свет через объектив попадает на пленку или матрицу, а не на датчик АF. А значит, эта система не годится для тех случаев, когда кадр визируется по ЖК-экрану (LiveView), то есть для большинства компактных цифровых камер и смартфонов.

Обратная сторона Лужкова: мэр и 10 его изобретений А первая настоящая АФ появилась в камере Minolta Maxxum 7000. Это была полноценная система фазовой автофокусировки через объектив (TTL) — предок всех современных фазовых систем АФ.

По образу и подобию

Для цифровых камер, которые с начала 2000-х заменили пленочные, пришлось придумывать новый принцип автофокусировки. Ну, не совсем новый. Как человек наводит объектив вручную? Крутит кольцо фокусировки, пока наблюдаемая картинка не станет резкой, то есть максимально контрастной. Контрастный автофокус работает точно так же: двигает объектив, добиваясь максимальной контрастности картинки на светочувствительной матрице.

Обратная сторона Лужкова: мэр и 10 его изобретений

Такая система работает с основной матрицей и не требует сложных оптических схем и дополнительных датчиков. Но, в отличие от фазовой автофокусировки, она не может определить заранее, в какую сторону следует двигать объектив, и начинает это делать в случайном направлении — точно так, как это делал бы человек. Поэтому скорость фокусировки иногда оставляет желать лучшего — особенно в условиях недостаточного освещения или при съемке малоконтрастных объектов, когда система просто не может «рассмотреть» резкие детали (в точности как человек). Тем не менее долгое время для компактных цифровых камер и особенно смартфонов альтернатив контрастной автофокусировке просто не существовало.

Обратная сторона Лужкова: мэр и 10 его изобретений Камера Canon EOS 70D стала первой моделью, оснащенной системой типа Dual Pixel CMOS AF. В отличие от гибридной системы АФ, которая использует специальные выделенные фотодиоды на общей КМОП-матрице, АФ с «двойными пикселями» и для фокусировки, и для фотосъемки задействует все фотодиоды матрицы.

Гибридный подход

В 2010 году компания Fujifilm выпустила камеру FinePix F300EXR с новой, гибридной системой автофокусировки. На матрице камеры, помимо обычных светочувствительных фотодиодов (пикселей), были равномерно разбросаны два типа специализированных — «правые» и «левые», то есть воспринимающие свет только от правой или левой части объектива (другая часть закрыта непрозрачной маской). Система АF сравнивала изображение на субматрицах, образованных «левыми» и «правыми» пикселями. Точное совпадение этих двух изображений говорит о точной фокусировке, а смещение показывает, насколько и в какую сторону следует сместить объектив. Похоже на фазовую АF, не так ли? Почти, но не совсем: разрешающая способность субматриц существенно меньше, чем всей матрицы, и при очень малых отклонениях от точной фокусировки система неспособна увидеть разницу, так что на финальном этапе используется фокусировка по контрасту.

Гибридная автофокусировка Гибридная автофокусировка

Ничего лишнего

Гибридный автофокус выгодно сочетает достоинства фазовой и контрастной систем АF, однако имеет и недостатки. Для улучшения работы АФ нужно увеличить количество пикселей, которые «работают» только на 50%, а это приводит к уменьшению общей светочувствительности матрицы. Но разработчики матриц придумали остроумный способ обойти это ограничение.

В 2013 году в камере Canon EOS 70D была впервые опробована система Dual Pixel CMOS AF. А в 2016 году на рынке появился первый смартфон с камерой, оснащенной системой Dual Pixel, — флагман Samsung Galaxy S7.

Автофокусировка с двойными пикселями Автофокусировка с двойными пикселями Существует способ сделать так, чтобы «всё было резко» вовсе без автофокусировки. В эпоху пленочных камер дешевые модели обычно снабжались простым объективом с фиксированной фокусировкой (focus-free) на гиперфокальном расстоянии. Такой объектив позволяет более-менее резко изображать все объекты, находящиеся на расстоянии от половины гиперфокального (обычно 0,5−1 м) до бесконечности. Подобными же объективами снабжались и дешевые цифровые камеры, и первые смартфоны с камерами. Однако этот принцип применим только для дешевых широкоугольных объективов с большим минимальным значением диафрагмы. Другой случай — это использование пленоптической камеры, или «камеры светового поля». Она фиксирует не только распределение освещенности в фокальной плоскости, но и направление пришедших лучей (световое поле). Такое изображение можно позднее «перефокусировать» любым нужным образом (в любой плоскости). Идея подобных камер была выдвинута в 1908 году, а несколько лет назад компания Lytro решила производить цифровые версии, хотя особого распространения они пока не получили.

Каждый пиксель матрицы Dual Pixel состоит из двух отдельных фотодиодов — «правого» и «левого». Таким образом, при автофокусировке вся матрица делится на две субматрицы, «правую» и «левую», с таким же разрешением, как и основная матрица. Сравнение сигналов с двух половинок обеспечивает точность выше, чем у гибридных, а скорость гораздо выше, чем у контрастных систем АF (скажем, в Samsung Galaxy S7 время фокусировки составляет менее 0,2 с). Поскольку Dual Pixel является фазовой системой АF, она позволяет отслеживать движение объекта в кадре. А в момент съемки обе субматрицы работают как единое целое, не происходит никакого падения светочувствительности, что важно для смартфонов с их небольшими матрицами. Поэтому такая система на сегодняшний день представляет собой вершину эволюции систем АF. Конечно, до тех пор, пока инженеры опять не придумают что-нибудь новое.

Автофокусировка с двойными пикселями

Сонары, радары и лидары

Отдельную ветку на эволюционном древе автофокусировки занимают внешние (относительно оптической системы камеры) дальномеры с прямым измерением расстояния. Одной из первых фотокамер с системой автофокусировки стала модель Polaroid SX-70 Sonar OneStep (1978), оснащенная, как понятно из ее названия, дальномером на основе ультразвукового сонара. Архаика? Вовсе нет, сонарные дальномеры для камер существуют и сейчас. Их выпускает, например, компания RedRockMicro — правда, не для автоматической, а для дистанционной ручной фокусировки профессиональных камер. Более новый принцип определения расстояния, лазерная локация, сейчас активно используется не только в строительной и военной технике, но и в некоторых смартфонах (LG G3) — в дополнение к обычной системе контрастной автофокусировки. В патентах Sony упоминается радарная автофокусировка, но серийных образцов подобного типа на рынке не представлено.

Редакция благодарит Markus Kohlpayntner за помощь в подготовке статьи.

Статья «История фокуса» опубликована в журнале «Популярная механика» (№6, Июнь 2016).

www.popmech.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *