Меню

B g n или n – Есть ли смысл оставить только 802.11n (отключить поддержку a/b/g)? — Хабр Q&A

В чем разница между WLAN 802.11 bgn и 802.11ac?

В чем разница между WLAN 802.11 bgn и 802.11 ac? Какой вай фай лучше?

Оригинальный вопрос “в чем разница между стандартами Wi-Fi 802.11 и AC?» и «В чем разница между WLAN 802.11 bgn и 802.11ac? Что лучше?”  Давайте начнем с просмотра этой схемы из R & S. В то время как начальные стандарты Wi-Fi 802.11 a, b, g были для 2,4 ГГц, 802.11n давал выбор между 2,4 ГГц или 5 ГГц. В чем разница между WLAN 802.11 b/g/n и 802.11ac? А сейчас поймете!

Протокол 802.11ax в деталях

802.11 ac был только длч 5 ГГц. Как видно, начальные версии 802.11 ac имели полосу пропускания до 80 МГц, которая увеличилась до 160 МГц. А более поздние версии поддерживали многопользовательский MIMO (MU-MIMO).

802.11 ac-это «заряженная» версия стандарта 802.11 n (текущий стандарт WiFi в смартфонах и ноутбуках), предлагает скорость соединения в диапазоне от 433 мегабит в секунду (Мбит / с), вплоть до нескольких гигабит в секунду. Для того чтобы достигнуть скоростей которые в десятки раз быстрее чем 802.11 n, 802.11 ac работает исключительно в диапазоне 5GHz, использует уйму полосы частот (80 или 160MHz), работает в до 8 пространственных потоках (MIMO), и использует новый вид технологии beamforming.

В чем разница между WLAN 802.11 bgn и 802.11ac? смотрите сами

Больше скорости: каждый новый стандарт Wi-Fi поставляется с большими скоростями. Стандарт » ac » может работать с каналами 80 МГц или даже переключаться на полосу 5 ГГц и двойную ширину канала до 160 МГц. Что позволяет отправлять гораздо больше данных. Скажем, восемь антенн маршрутизатора 80 МГц, стандарт теоретически может достигать скорости 3,47 Гбит / с или более. Но некоторые другие ограничения предотвращают это. Обновления до 802.11 ac сделали роутеры более быстрыми за эти годы.

Меньше помех: 802.11 n (и все более ранние стандарты Wi-Fi) работают в нелицензированной полосе частот 2,4 ГГц. Которая широко доступна всем: от беспроводных телефонов до устройств Bluetooth. От детских мониторов до микроволновых печей. В чем разница между WLAN 802.11 b/g/n и 802.11ac? 802.11 ac обратно совместим и может легко использовать диапазон 2,4 ГГц: так как этот диапазон легко форматировать, он по-прежнему остается предпочтением для большинства беспроводных сетей на дому.

Однако 802.11 ac может также работать на полосе на 5 ГГц. На этой частоте диапазон уменьшается, но легко размещает больше информации в сигнале, поэтому скорость может увеличиться. Он даже легко пробивает фасадные панели, и вай-фай доступен вам даже во дворе или на улице. Это реально удобно, так как ранее нужно было ставить несколько роутеров.

Так же намного меньше помех на частоте 5 ГГц. Когда у вас маршрутизатор, который является «двухдиапазонным», это означает, что он может работать на частоте 5 ГГц, а интеллектуальные маршрутизаторы часто могут автоматически переключать устройства на другую полосу. Это если они видят, что полоса по умолчанию переполняется.

Улучшенное управление потоком: 802.11 ac представил несколько аккуратных фишек для Wi-Fi. Во-первых, это способности для ориентации луча, или способность маршрутизаторов отслеживать местоположение конкретных устройств и усилить сигнал, направленный на эти устройства. Это помогает уменьшить или избавиться от мертвых зон. И повысить производительность по внешним краям приема. Стандарт позволяет использовать MU-MIMO (многопользовательские, многовходовые, многовходовые) соединения. Этот все еще развивающийся протокол, который позволяет маршрутизаторам устанавливать независимые соединения с четырьмя совместимыми устройствами. И для повышения скорости и сокращения проблем с задержкой.

Параллельно существует также 802.11 ad для 60 ГГц, но это описано как настольная сеть. Мы оставим его рассмотрение на другой раз.

802.11 ac далее превращается в 802.11ax, вот краткое сравнение для справки

Что касается заключительной части вопроса “ » Что лучше?”. Как правило, новая технология, как правило, лучше, поскольку она имеет расширенные функции. Хотя иногда может потребоваться перейти к более старой технологии, в зависимости от устройств, обратного канала, помех и т. д. на этом все, спасибо за внимание.

Facebook

Twitter

Вконтакте

Одноклассники

Pinterest

Просмотров сегодня: 1 144

что нам нужно знать о новом стандарте Wi-Fi / Habr

На прилавках пестрят новые устройства на базе 802.11ac которые уже поступили в продажу, и очень скоро перед каждым юзером будет стоять вопрос, стоит ли переплачивать за новую версию Wi-Fi? Ответы на вопросы, касающиеся новой технологии, попробую осветить в данной статье.

802.11ac – предыстория

Последняя официально утвержденная версия стандарта (802.11n), находилась в разработке с 2002 по 2009 год, однако ее так называемая черновая версия (draft) была принята еще в 2007 году, и как многие, наверное, помнят, роутеры с поддержкой 802.11n draft можно было найти в продаже практически сразу после этого события.

Разработчики маршрутизаторов и других Wi-Fi устройств поступили тогда совершенно верно, не дожидаясь утверждения финальной версии протокола. Это позволило им на 2 года раньше выпустить устройства, обеспечивающие скорости передачи данных до 300 Мб/с, а когда стандарт был окончательно запечатлен на бумаге и появились первые 100% стандартизированные маршрутизаторы, старые модули не утратили совместимости за счет следования черновой версии стандарта, обеспечивающей совместимость на уровне железа (незначительные разногласия можно было устранить с помощью обновления программной прошивки).

С 802.11ac сейчас повторяется практически та же история, что была и с 802.11n. Сроки принятия нового стандарта пока точно не известны (предположительно не ранее конца 2013 года), но уже принятая черновая спецификация с большой вероятностью гарантирует, что все выпущенные сейчас устройства в будущем без проблем заработают с сертифицированными беспроводными сетями.

До недавнего времени каждая новая версия добавляла в конце стандарта 802.11 новую букву (например, 802.11g), и они возрастали в алфавитном порядке. Однако в 2011 году эту традицию немного нарушили и перепрыгнули с версии 802.11n сразу на 802.11ac.

Draft 802.11ac был принят в октябре прошлого года, однако первые коммерческие устройства на его основе появились буквально в течение нескольких последних месяцев. Например, Cisco выпустила свой первый маршрутизатор с поддержкой 802.11ac в конце июня 2012.

Улучшения в 802.11ac

Можно определенно говорить о том, что даже 802.11n еще не успел раскрыть себя в некоторых практических задачах, однако это не значит, что прогресс должен стоять на месте. Помимо более высокой скорости передачи данных, которая может быть задействована лишь через несколько лет, каждое усовершенствование Wi-Fi приносит и другие преимущества: повышенную стабильность сигнала, увеличенный диапазон покрытия, снижение энергопотребления. Все вышеперечисленное справедливо и для 802.11ac, так что ниже остановимся на каждом пункте подробнее.

802.11ac относится к пятому поколению беспроводных сетей, и в разговорном языке за ним может закрепиться название 5G WiFi, хотя официально оно неверно. При разработке этого стандарта одной из главных целей ставилось достижение гигабитной скорости передачи данных. В то время как использование дополнительных, как правило, еще не задействованных каналов, позволяет разогнать даже 802.11n до внушительных 600 Мб/с (для этого будут использоваться 4 канала, каждый из которых работает на скорости 150 Мб/с), гигабитную планку ему так и не суждено будет взять, и эта роль достанется его преемнику.

Указанную скорость (один гигабит) решено было брать не любой ценой, а с сохранением совместимости с более ранними версиями стандарта. Это значит, что в смешанных сетях все устройства будут работать независимо от того, какую версию 802.11 они поддерживают.

Для достижения этой цели 802.11ac будет по-прежнему работать на частоте до 6 ГГц. Но если в 802.11n для этого использовались сразу две частоты (2.4 и 5 ГГц), а в более ранних ревизиях только 2.4 ГГц, то в AC низкую частоту вычеркнут и оставят лишь 5 ГГц, так как именно она более эффективна для передачи данных.

Последнее замечание может показаться несколько противоречивым, поскольку на частоте 2.4 ГГц сигнал лучше распространяется на большие расстояния, эффективнее огибая препятствия. Однако этот диапазон уже занят огромным количеством «бытовых» волн (от устройств Bluetooth до микроволновых печей и другой домашней электроники), и на практике его применение только ухудшает результат.

Другой причиной для отказа от 2.4 ГГц стало то, что в этом диапазоне не хватит спектра для размещения достаточного количества каналов шириной в 80-160 МГц каждый.

Следует подчеркнуть, что, несмотря на разные рабочие частоты (2.4 и 5 ГГц), IEEE гарантирует совместимость ревизии AC с более ранними версиями стандарта. Каким образом это достигается, подробно не объяснено, но скорее всего, новые чипы будут использовать 5 ГГц как базовую частоту, однако при работе со старыми устройствами, не поддерживающими этот диапазон, смогут переключаться на более низкие частоты.

Скорость

Заметный прирост скорости в 802.11ac будет получен за счет сразу нескольких изменений. В первую очередь, за счет удвоения ширины канала. Если в 802.11n он уже был увеличен с 20 до 40 МГц, то в 802.11ac составит целых 80 МГц (по умолчанию), а в некоторых случаях и 160 МГц.

В ранних версиях 802.11 (до N спецификации) все данные передавались лишь в один поток. В N их число может составлять 4, хотя до сих пор чаще всего используются только 2 канала. На практике это значит, что суммарная максимальная скорость вычисляется как произведение максимальной скорости каждого канала на их количество. Для 802.11n получаем 150 x 4 = 600 Мб/с.

В 802.11ac пошли дальше. Теперь число каналов увеличено до 8, и максимально возможную скорость передачи в каждом конкретном случае можно узнать в зависимости от их ширины. При 160 МГц получается 866 Мб/с, и, умножив эту цифру на 8, получаем максимальную теоретическую скорость, которую может обеспечить стандарт, то есть почти 7 Гб/с, что в 23 раза быстрее, чем дает 802.11n.

Гигабитную, а тем более 7-гигабитную скорость передачи данных поначалу смогут обеспечить далеко не все чипы. Первые модели маршрутизаторов и других Wi-Fi устройств будут работать на более скромных скоростях.

Например, уже упомянутый первый 802.11ac роутер Cisco хоть и превосходит возможности 802.11n, тем не менее также не выбрался из «догигабитного» диапазона, демонстрируя лишь 866 Мб/с. При этом речь идет о старшей из двух доступных моделей, а младшая обеспечивает всего 600 Мб/c.

Впрочем, заметно ниже этих показателей скорости также не будут падать даже в устройствах самого начального уровня, поскольку минимальная возможная скорость передачи данных, согласно спецификациям, составляет для AC 450 Мб/c.

Экономное энергопотребление
Экономное расходование энергии станет одной из самых сильных сторон AC. Чипы на базе этой технологии уже пророчат во все мобильные устройства, утверждая, что это повысит автономность не только при равной, но и при более высокой скорости передачи данных.

К сожалению, до выхода первых устройств более точные цифры получить вряд ли удастся, а когда новые модели будут на руках, сравнить возросшую автономность можно будет лишь приблизительно, ввиду того, что на рынке вряд ли будет два одинаковых смартфона, отличающихся только беспроводным модулем. Ожидается, что массово такие устройства начнут появляться в продаже ближе к концу 2012 года, хотя первые ласточки уже видны на горизонте, например, ноутбук Asus G75VW, представленный в начале лета.

По словам Broadcom, новые устройства до 6 раз энергоэффективней при сравнении с их аналогами на базе 802.11n. Скорее всего, производитель сетевого оборудования ссылается на некие экзотические условия тестирования, и средняя цифра экономии будет гораздо ниже приведенной, но все равно должна заметно проявляться в виде дополнительных минут, а возможно, и часов работы мобильных устройств.

Возросшая автономность, как это часто бывает, не является в данном случае маркетинговым ходом, поскольку прямо следует из особенностей работы технологии. Например, тот факт, что данные будут передаваться на большей скорости, уже является причиной снижения расхода энергии. Поскольку тот же объем данных может быть получен за меньшее время, беспроводной модуль будет отключен раньше и, следовательно, перестанет обращаться к батарее.

Формирование направленного сигнала (Beamforming)
Эта методика формирования сигнала могла применяться еще в 802.11n, однако на тот момент ее не стандартизировали, и при использовании сетевого оборудования от различных производителей она, как правило, работала неверно. В 802.11ac все аспекты работы бимформинга унифицированы, поэтому он будет применяться на практике куда чаще, хотя все еще остается опциональным.

Названная методика решает проблему падения мощности сигнала, вызванную его отражением от различных предметов и поверхностей. При достижении приемника все эти сигналы приходят со сдвигом фазы, и таким образом уменьшают суммарную амплитуду.

Бимформинг решает эту проблему следующим образом. Передатчик приблизительно определяет местоположение приемника и, руководствуясь этой информацией, формирует сигнал нестандартным образом. В обычном режиме работы сигнал от приемника расходится равномерно во все стороны, а при бимформинге направляется в строго определенном направлении, что достигается с помощью нескольких антенн.

Бимформинг не только улучшает распространение сигнала на открытой территории, но также помогает «пробивать» стены. Если раньше роутер не
«доставал» в соседнюю комнату или обеспечивал крайне нестабильную связь с низкой скоростью, то с AC качество приема в той же самой точке будет гораздо лучше.

802.11ad

802.11ad, также как и 802.11ac, имеет второе, более легкое для запоминания, но неофициальное имя – WiGig.

Несмотря на название, эта спецификация не будет следующей за 802.11ac. Обе технологии начали развивать одновременно, и главная цель (преодоление гигабитного барьера) у них одна. Разные только подходы. Если AC стремится сохранить совместимость с предыдущими разработками, то AD начинает с чистого листа бумаги, что во многом упрощает его реализацию.

Главным отличием между соперничающими технологиями станет рабочая частота, из которой следуют все остальные особенности. Для AD она на порядок выше по сравнению с AC и составляет 60 ГГц вместо 5 ГГц.

В связи с этим рабочий диапазон (зона покрытая сигналом) также уменьшится, однако в нем будет гораздо меньше интерференций, поскольку 60 ГГц используются реже по сравнению с рабочей частотой 802.11ac, не говоря уже о 2.4 ГГц.

На каких именно дистанциях 802.11ad устройства будут видеть друг друга, сказать пока сложно. Не уточняя цифр, официальные источники говорят об «относительно небольших дистанциях в пределах одной комнаты». Отсутствие на пути сигнала стен и других серьезных препятствий также является обязательным и необходимым условием для работы. Очевидно, что речь идет о нескольких метрах, и символично, если бы пределом стало бы то же ограничение, что и для Bluetooth (10 метров).

Небольшой радиус передачи станет причиной того, что технологии AC и AD не будут конфликтовать между собой. Если первая нацелена на беспроводные сети для домов и офисов, то вторая будет использоваться в других целях. В каких именно, вопрос все еще открытый, но уже есть слухи о том, что AD наконец придет на смену Bluetooth, который не справляется со своими обязанностями из-за крайне низкой по нынешним меркам скорости передачи данных.

Стандарт также позиционируют для «замены проводных соединений» – вполне возможно, что в ближайшем будущем он станет известен как «беспроводной USB» и будет применяться для подключения принтеров, жестких дисков, возможно, мониторов и другой периферии.

Текущая Draft версия AD уже опередила свою первоначальную цель (1 Гб/c), и максимальная скорость передачи данных в ней составляет 7 Гб/с. При этом используемая технология позволяет улучшить эти показатели, оставаясь в рамках стандарта.

Что 802.11ac значит для простых пользователей

Вряд ли к моменту стандартизации технологии интернет-провайдеры уже начнут предлагать тарифные планы, для раскрытия которых необходима мощь 802.11ac. Следовательно, реальное применение более скоростному Wi-Fi на первых порах можно будет найти только в домашних сетях: быстрая передача файлов между устройствами, просмотр HD-фильмов при одновременной загрузке сети другими задачами, бэкап данных на внешние жесткие диски, подключенные непосредственно к роутеру.

802.11ac решает не только проблему со скоростью. Большое количество подключенных к роутеру устройств уже сейчас может создавать проблемы, даже если пропускная способность беспроводной сети используется не по максимуму. Учитывая, что количество таких устройств в каждой семье будет только расти, думать над проблемой надо уже сейчас, и AC является ее решением, позволяя одной сети работать с большим количеством беспроводных устройств.

Быстрее всего AC распространится в среде мобильных устройств. Если новый чип будет обеспечивать хотя бы 10% прирост автономности, его использование полностью оправдает себя даже при небольшом увеличении цены устройства. Первые смартфоны и планшеты на базе технологии AC, скорее всего, стоит ждать ближе к концу года. Как уже упоминалось, ноутбук с 802.11ac уже выпущен, однако, насколько известно, это пока единственная модель на рынке.

Как и предполагалось, стоимость первых AC-роутеров оказалась достаточно высокой, и резкого падения цен в ближайшие месяцы вряд ли стоит ждать, особенно если вспомнить, как ситуация развивалась с 802.11n. Однако уже в начале следующего года маршрутизаторы будут стоить меньше $150-200, которые производители просят за свои первые модели прямо сейчас.

Согласно просачивающейся небольшими дозами информации, Apple в очередной раз будет среди первых адептов новой технологии. Wi-Fi всегда был ключевым интерфейсом для всех устройств компании, к примеру, 802.11n нашел свой путь в технику Apple сразу после утверждения Draft спецификации в 2007 году, поэтому не удивительно, что 802.11ac также готовится к скорому дебюту в составе многих устройств Apple: ноутбуках, Apple TV, AirPort, Time Capsule и, возможно, iPhone/iPad.

В завершение, стоит напомнить, что все упомянутые скорости являются максимально теоретически достижимыми. И точно так же, как 802.11n на самом деле работает медленнее 300 Мб/с, реальные предельные скорости для AC также будут ниже того, что указано на устройстве.

Производительность в каждом случае будет сильно зависеть от используемого оборудования, наличия других беспроводных устройств, конфигурации помещения, но ориентировочно, роутер с надписью 1.3 Гб/с сможет передавать информацию не быстрее 800 Мб/с (что по-прежнему заметно выше теоретического максимума 802.11n).

Что значит b/g/n стандарты для Wi-Fi роутера?

Наконец-то вы решили избавиться от бесчисленных кабелей, идущих к вашему компьютеру, в случае с интернетом вам поможет беспроводной роутер, который выступает в качестве источника сигнала, а принимать его будет соответствующий адаптер. Он же может располагаться в вашем ноутбуке по умолчанию, либо вам придется докупить соответствующее устройство, которое может подключаться как с помощью USB разъема, так и PCI шины на материнской плате.

Вот вы уже пришли в магазин, либо интересуетесь товаром на интернет странице, но сразу же обнаружили незнакомые ранее стандарты роутеров, так что они значат на самом деле? Проще говоря, эти буквы отвечают за скорость передачи данных от роутера к адаптеру, b — является самым минимальным режимом работы, здесь предоставляется скорость только до 11 Мбит/с. Среднее место по скорости занимает стандарт g, в этом случае вы будете использовать интернет на максимально доступной скорости в 54 Мбит в секунду. Самым новый и соответственно, самый мощный — n. В этом случае скорость значительно выросла, если сравнивать с небольшим прыжком двух предыдущих стандартов, передача данных будет осуществляться до 600 Мбит/с.

Но, как не странно, в настройках роутера возможен выбор этих стандартов, но для чего он, если максимальная скорость всегда является самой лучшей? Все очень просто, дело в том, что мобильные устройства не всегда поддерживают максимальную скорость и режим работы, который предоставляет сам роутер. Вы не сможете воспользоваться интернетом со своего телефона или смартфона, если он не может работать в этом стандарте. Если режим работы в роутере будет стоять только n (не учитывая разные mixed), вы просто не сможете подключиться к такой сети.

Данная проблема может быть не только в таких мобильных устройствах как телефон, в большинстве случаев более старые модели ноутбуков также оснащены и низким по качеству адаптером, поскольку стандарт n является самым новым, и он попросту не существовал в то время. В помощь пользователю, многие роутеры поддерживают комбинирование стандартов, то есть, могут работать на всех имеющихся сразу, что позволяет использовать любое устройство для подключения к сети интернет.

Если вы обладатель высокоскоростного интернета, вам потребуется роутер с соответствующим стандартом, поскольку более слабый по скорости передачи данных, будет уменьшать качество интернета к своему уровню.

Базовые положения стандарта Wi-Fi 4 (IEEE 802.11n) – Keenetic

Стандарт Wi-Fi 4 (802.11n) для сетей Wi-Fi был утвержден организацией IEEE (Институт инженеров по электротехнике и радиоэлектронике) 11 сентября 2009 года.

В основе стандарта 802.11n:

  • Увеличение скорости передачи данных;
  • Увеличение зоны покрытия;
  • Увеличение надежности передачи сигнала;
  • Увеличение пропускной способности.

Концепция 802.11n

Стандарт 802.11n включает в себя множество усовершенствований по сравнению с устройствами стандарта 802.11g.

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.
На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.
На канальном подуровне управления доступом к среде (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить максимальную теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).
В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация. При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей. Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Многоканальный вход/выход (MIMO)

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple-Input Multiple-Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.
Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4» (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн (T), а второе число (N) определяет количество приемных антенн (R). Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» (или 2T3R) MIMO-устройством.

Чем больше устройство 802.11n использует антенн для одновременной работы передачи/приема, тем будет выше максимальная скорость передачи данных. Однако, само по себе использование нескольких антенн не увеличивает скорость передачи данных или расширение диапазона. Основным в устройствах стандарта 802.11n является то, что в них реализован

Стандарты беспроводных сетей 802.11g и 802.11n, 802.11ac- DrRouter

Сегодня мы рассмотрим все существующие стандарты IEEE 802.11, которые предписывают использование определенных методов и скоростей передачи данных, методов модуляции, мощности передатчиков, полос частот, на которых они работают, методов аутентификации, шифрования и многое другое.

С самого начала сложилось так, что некоторые стандарты работают на физическом уровне, некоторые — на уровне среды передачи данных, а остальные — па более высоких уровнях модели взаимодействия открытых систем ISO/OSI.

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень).
Стандарт IEEE 802.11d, IEEE 802.11e, IEEE 802.11i, IEEE 802.11j, IEEE 802.11h и IEEE.
802.11r — параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д..
IEEE 802.11f IEEE 802.11с— принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы.

Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания.

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах — 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;
  • необязательные — 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;
  • высокая скорость передачи;
  • возможность подключения большого количества компьютеров.

Недостатки стандарта IEEE 802.1 1a такие:

  • меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м): J большая потребляемая мощность радиопередатчиков;
  • более высокая стоимость оборудования по сравнению с оборудованием других стандартов;
  • для использования диапазона 5 ГГц требуется наличие специального разрешения.

Для достижения высоких скоростей передачи данных стандарт IEEE 802.1 1a использует в своей работе технологию квадратурной амплитудной модуляции QAM.

IEEE 802.11b

Работа над стандартом IEEE 802 11b (другое название IFEE 802.11 High rate, высокая пропускная способность) была закончена в 1999 году, и именное ним связано название Wi-Fi (Wireless Fidelity, беспроводная точность).

Работа данного стандарта основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (ССК). Это позволяет достичь скорости передачи данных 11 Мбит/с.

Как и базовый стандарт, IEEE 802.11b работает с частотой 2.4 ГГц, используя не более трех не перекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительной особенностью этого стандарта является то, что при необходимость (например, при ухудшении качества сигнала, большой удаленности от точки доступа. различных помехах) скорость передачи данных может уменьшаться вплоть до 1 Мбнт/с. Напротив, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимальной Этот механизм называется динамическим сдвигом скорости.

Кроме оборудования стандарта IEEE 802.11b. часто встречалось оборудование IEEE 802.11Ь*. Отличие между этими стандартами заключается лишь в скорости передачи данных. В последнем случае она составляет 22 Мбит/с благодаря использованию метода двоичного пакетного свёрточного кодирования (Р8СС).

IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Этот стандарт очень важен, поскольку для работы сетевого оборудования используются радиоволны. Если они не будут соответствовать указанным параметрам. То могут помешать другим устройствам. работающим в этом или близлежащем диапазоне частот.

IEEE 802.11е

Поскольку но сети могут передаваться данные разных форматов и важности, существует потребность в механизме, который бы определял их важность и присваивал необходимый приоритет. За это отвечает стандарт IEEE 802.11е,  разработанный с целью передачи потоковых видео- или аудиоданных с гарантированным качеством и доставкой.

IEEE 802.11f

Стандарт IEEE 802.11f разработан с келью обеспечения аутентификации сетевого оборудования (рабочей станции) при перемещении компьютера пользователя от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией IAPP (Inter-Access Point Protocol), который необходим для передачи данных между точками доступа При этом достигается эффективная организация работы распределенных беспроводных сетей.

IEEE 802.11g

Вторым по популярности на сегодняшний день стандартом можно считать стандарт IEEE 802.11g. Целью создания данного стандарта было достижение скорости передачи данных 54 Мбит/с.
Как и IEEE 802.11b. стандарт IEEE 802.11g разработан для работы в частотном диапазоне 2,4 ГГц. IEEE 802.11g предписывает обязательные и возможные скорости передачи данных:

  • обязательные —1;2;5,5;6; 11; 12 и 24 Мбит/с;
  • возможные — 33;36;48 н 54 Мбит/с.

Для достижения таких показателен используется кодирование с помощью последовательности дополнительных кодов (ССК). метод ортогонального частотною мультиплексирования (OFDM), метод гибридного кодирования (ССК-OFDM) и метод двоичною пакетного свёрточного кодирования (РВСС).

Стоит отметить, что одной и той же скорости можно достичь разными методами, однако обязательные скорости передачи данных достигаются только с помощью методов ССК п OFDM, а возможные скорости с помощью методов ССК-OFDM и РВСС.

Преимуществом оборудования стандарта IEEE 802.11g является совместимость с оборудованием IEEE 802.11b. Вы сможете легко использовать свои компьютер с сетевой картой стандарта IEEE. 802.11b для работы с точкой доступа стандарта IEEE 802.11g. и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а.

IEEE 802.11h

Стандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит некоторые новые алгоритмы в протокол доступа к среде МАС (Media Access Control, управление доступом к среде), а также в физический уровень стандарта IEEE 802.11a.

В первую очередь это связано с тем, что в некоторых странах диапазон 5 ГГц используется для трансляции спутникового телевидения, для радарного слежения за объектами н т. п., что может вносить помехи в работу передатчиков беспроводной сети.

Смысл работы алгоритмов стандарта IEEE 802.11h заключается в том. что при обнаружении отраженных сигналов ( интерференции) компьютеры беспроводной сети (или передатчики) могут динамически переходить в другой диапазон, а также понижать или повышать мощность передатчиков. Это позволяет эффективнее организовать работу уличных и офисных радиосетей.

IEEE 802.11i

Стандарт IEEE 802.11i разработан специально для повышения безопасности работы беспроводной сети. С этой целью созданы разные алгоритмы шифрования и аутентификации, функции зашиты при обмене информацией, возможность генерирования ключей и т. д.:

  • AES (Advanced Encryption Standard, передовой алгоритм шифрования данных) — алгоритм шифрования, который позволяет работать с ключами длиной 128. 15)2 и 256 бит;
  • RADIUS (Remote Authentication Dial-In User Service, служба дистанционной аутентификации пользователя) — система аутентификации с возможностью генерирования ключей для каждой сессии и управления ими. включающая в себя алгоритмы проверки ПОДЛИННОСТИ пакетов и т.д.;
  • TKIР (Temporal Key Integrity Protocol, протокол целостности временных ключей) — алгоритм шифрования данных;
  • WRAP (Wireless Robust Authenticated Protocol, устойчивый беспроводной протокол аутентификации) — алгоритм шифрования данных;
  • ССМР (Counter with Cipher Block Chaining Message Authentication Code Protocol) — алгоритм шифрования данных.

IEEE 802.11 j

Стандарт IEEE 802.11j разработан специально для использования беспроводных сетей в Японии, а именно для работы в дополнительном диапазоне радиочастот 4.9-5 ГГц. Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4.9 ГГц.

На данный момент частота 4,9 ГГц рассматривается как дополнительный диапазон для использования в США. Из официальных источников известно, что этот диапазон готовится для использования органами общественной и национальной безопасности.
Данным стандартом расширяется диапазон работы устройств стандарта IEEE 802.11a.

IEEE 802.11n

На сегодняшний день стандарт IEEE 802.11n самый распространенный из всех стандартов, касающихся беспроводных сетей.

В основе стандарта 802.11n:

  • Увеличение скорости передачи данных;
  • Расширение зоны покрытия;
  • Увеличение надежности передачи сигнала;
  • Увеличение пропускной способности.

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация.

При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей.

Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4» (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн.

Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO-устройством. В дальнейшем я более подробно опишу этот стандарт

IEEE 802.11г

Ни в одном беспроводном стандарте толком не описаны правила роуминга, то есть перехода клиента от одной зоны к другой. Это намереваются сделать в стандарте IEEE 802.11г.

Стандарт IEEE 802.11ac

Он обещает гигабитные беспроводные скорости для потребителей.

Первоначальный проект технической спецификации 802.11ac подтвердили рабочей группой (TGac) в прошлом году. В то время как ратификация  Wi-Fi Alliance  ожидается в конце этого года. Несмотря на то, что стандарт 802.11ac  пока в стадии проекта и еще должен быть ратифицирован Wi-Fi Alliance и IEEE. Мы уже начинаем видеть продукты гигабитного Wi-Fi, доступные на рынке.

Характеристики стандарта нового поколения Wi-Fi  802.11ac:

WLAN 802.11ac использует целый ряд новых методов для достижения огромного прироста производительности к теоретически поддерживает гигабитный потенциал и обеспечение высоких пропускных способностей, таких как:

  • 6GHz полоса
  • Высокая плотность модуляции до 256 QAM.
  • Более широкие полосы пропускания — 80MHz для двух каналов или 160MHz для одного канала.
  • До восьми Multiple Input Multiple Output пространственных потоков.

Многопользовательские MIMO низкого энергопотребления 802.11ac ставят новые проблемы для разработки инженеров, работающих со стандартом. Далее мы обсудим эти проблемы и доступные решения, которые помогут разработке новых продуктов, основанных на этом стандарте.

Более широкая полоса пропускания:

802.11ac имеет более широкую полосу пропускания 80 MHz или даже 160 MHz по сравнению с предыдущим до 40 MHz  в стандарте 802.11n. Более широкая полоса пропускания приводит к улучшению максимальной пропускной способности для цифровых систем связи.

Среди наиболее сложных задач проектирования и производства — генерация и анализ сигналов широкой полосы пропускания для 802.11ac.   Потребуется тестирование оборудования, способного обрабатывать 80  или 160 MHz  для проверки передатчиков, приемников и компонентов.

Для генерации 80 MHz сигналов, многие  генераторы RF сигналов не имеют достаточно высокой частоты дискретизации для поддержки типичного минимума 2X соотношения пере дискретизации, которые дадут в результате необходимые образы сигналов. Используя правильные фильтрации и пере дискретизации сигнала из Waveform  файла, возможно генерировать 80 MHz сигналы с хорошими спектральными характеристиками и EVM.

Для генерации сигналов 160 MHz, в широком диапазоне генератор волновых сигналов произвольной формы (AWG). Такие как Agilent 81180A, 8190A можно использовать для создания аналоговых  I/Q сигналов.

Эти сигналы можно применить к внешнему  I/Q. Как входы  векторного генератора сигналов для преобразования частоты RF. Кроме того, можно создать 160 MHz сигналы с использованием 80 +80 MHz режима поддерживающего стандарт для создания двух сегментов 80 MHz  в отдельных MCG или  ESG генераторах сигнала, объединив затем радиосигналы.

MIMO:

MIMO является использованием нескольких антенн для повышения производительности системы связи. Вы могли видеть некоторые Wi-Fi точки доступа, имеющие более одной антенны. Которые торчат из них, —  эти маршрутизаторы используют технологию MIMO.

Проверкой MIMO конструкций является изменение. Многоканальный генерации и анализ сигналов можно использовать для представления о производительности устройств MIMO. И оказания помощи в устранении неполадок и проверки проектов.

Усилитель Линейности:

Усилитель Линейности является  характеристикой и усилителем. С помощью которого выходной сигнал усилителя остается верным входному сигналу по мере возрастания. Реально усилители линейности линейны  только до предела, после которого выход насыщается.

Есть много методов для улучшения линейности усилителя. Цифровой предыскажения является одним из таких технику. Автоматизация проектирования программного обеспечения, как SystemVue обеспечивает приложение. Которое упрощает и автоматизирует цифрового дизайна предыскажений для усилителей мощности.

Совместимость с предыдущими версиями

Хотя стандарт 802.11n используется уже в течение многих лет. Но до сих пор также работают многие маршрутизаторы и беспроводные устройства более старых протоколов. Таких как 802.11b и 802.11g, правда их реально мало. Также и при переходе к 802.11ac, будут поддерживаться старые Wi-Fi стандарты и обеспечиваться обратная совместимость.

Что такое 802.11ax? Как это по сравнению с 802.11AC?

Wi-Fi 6: Что изменилось и почему это важно

Пока это все. Если у Вас еще есть вопросы, можете смело написать мне в, Twitter, или Google+ или в Facebook, или задать их в разделе комментариев ниже.

Facebook

Twitter

Вконтакте

Одноклассники

Pinterest

Просмотров сегодня: 557

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *