Меню

Технологический процесс процессора – Технологическое отставание России по микропроцессорам на основании технологического процесса в производстве

Содержание

Технологическое отставание России по микропроцессорам на основании технологического процесса в производстве

На фоне предстоящего серийного производства аж 3 процессоров российского производства — Эльбрус 8C (МЦСТ), Baikal (Т-Платформы) и Мультиклет R1, я решил проанализировать технологическое отставание России по микропроцессорам на основании технологического процесса в производстве процессором в России/СССР и у лидеров в этой области.

Сколько-нибудь структурирование данные для России за весь период существования микроэлектроники или хотя бы его части я не нашел.

Сбор данных


С данными по лидерам проблем не было — они есть в самых разных источниках, например, в английской Википедии или на русском языке. Так как корректность этих данных никаких сомнений не вызывает, останавливаться на этом не стоит.

С данными по России/СССР было сложнее. Использовались несколько каталогов, в частности sovietcpu.com. Даты разработки и тех процесс проверялся в разных источниках, в частности, это сайты производителей, а по советским процессорам использовались справочники, например, academic.ru и другие.

Минимальные критерии включения в список:

  1. Центральные процессоры ЭВМ
  2. Оригинальная российская архитектура
  3. Лицензированная архитектура
  4. Возможность производства в России или за рубежом
  5. Хотя бы мелкосерийное производство
  6. Включаем первое упоминание

Из этих данных можно выделить основные года переходов на новые тех. процессы
Год перехода Тех. процесс Представитель
1974 10 мкм К587–серия
1977 6 мкм К580ИК80
1982 3 мкм К1801ВМ1
1989 1.5 мкм КР1847ВМ286
1991 1 мкм Л1876ВМ1
1998 500 нм MCST R80
2001 350 нм MCST R150
2004 130 нм MCST R500
2010 90 нм MCST R1000
2014 65 нм Эльбрус-4С
2015 28 нм Эльбрус-8С

П.С. Л1876ВМ1 был разработан в СССР, но выпускался в Белоруссии, поэтому в список он тоже включен.
П.С. Так же у СССР в 90-ых в Германии были мощности для производства по технологии 1 мкм.

Оказалось удобными рисовать графики по двум признакам — отсталость в годах и отсталости в кратном числовом выражении. Сразу отмечу: графики отражают возможность производить (не важно где) по нужному тех. процессу, а не количество произведенных устройств, но условием является хотя бы мелкосерийное производство.

График отсталости в годах отображает скорость отставания по переходу на новые технологические процессы. Переходы осуществляются редко и рывками, от чего процессоры успевают изрядно устареть. Так, в 1997 году отставание достигло своего пика, поскольку на тот момент времени Россия могла производить процессоры только по тех. процессу 1 мкм, который впервые появился в 1985 году, то есть 12 лет назад относительно 1997 года.

Второй график более интересен, потому что отображает отставание по тех. процессу в кратном числовом выражении. Максимальное отставание приходится не на 90-ые как можно ожидать, а на 2014 год когда выходит Эльбрус 4С с 65 нм (лидеры уже освоили 14нм), получается что российский процессор тогда был «больше» в 4,6 раз. Впрочем, уже в 2015-году с появлением 32 нм процессоров Эльбрус 8C и Baikal – отставание сокращается до 2 раз. Минимальные отрывы конкурентов приходятся на 1991-1993 годы (всего 1.3 раза) и 2004–2005 (1.4 раза).

Небольшой ракурс в историю и причины взлетов и падений


Первые советские процессоры выполненные по тех. процессу 10 мкм появились в 1974 году. Это была серия К587, которая была введена в строй на 3 года позже аналогов.

Через три года, в 1977 году выходит серия К580, клон i8080, изготовленные по тех. процессу 6 мкм. Одна из первых моделей — К580ИК80. После было выпущено множество процессоров по этому тех. процессу. Что примечательно, почти все они были клонами западных компаний.

Переход на 3 мкм был осуществлён только в 1982 году, с появлением процессора К1801ВМ1.

В 80-ых когда США ввели санкции против СССР, развитие электронной промышленности в стране сильно замедлилось. В санкциях было такое положение:

Запретить поставки технологий: ничего сложнее, чем IBM 360 (1964 год)

Тем не менее переход на 1.5 мкм был сделан в 1989 году с появлением КР1847ВМ286, копией i286, а в 1991 году перешли на 1 мкм — Л1876ВМ1 (i386). Тогда СССР уступал конкурентам по тех. процессу только в 1.3 раза. Это был лучший результат за всю историю России/СССР.

К сожалению в следующие 7 лет ситуация начала деградировать. Причины всем нам известны — экономический кризис и политическая нестабильность.

К 1997-году российские предприятия не могли производить ничего сложнее копии i386, отставание равнялось 12 годам. Самостоятельно преодолеть барьер в виде нескольких поколений процессоров только что очнувшаяся от шоков страна самостоятельно была не в состоянии, поэтому, спроектировав свой новый процессор R80 по тех. процессу 0,5 мкм на архитектуре SPARC, компания МЦСТ начала выпуск во Франции.

В больших количествах R80 и его немного улучшеная версия R100 не выпускались — но все же это был настоящий рывок для России. Уже через 3 года на этой основе был разработан более современный R150 (350 нм) — он и пошёл в серию, производство наладили на Тайване.

Далее события развивались куда более динамично — в 2004 переход на 130 нм (R500), a в 2010 — на 90 мкм (R1000). Производство перенесли с Тайваня в подмосковный Зеленоград, что очень важно поскольку до этого в России не было мощностей, способных работать по нужным тех. процессам.

В апреле 2014 года МЦСТ представила 4 ядерный Эльбрус-4С, выполненный по технологии 65 нм. И хотя это, с учетом возможности производить в России, был настоящий рывок, но все же отставший от конкурентов на 8 лет продукт.

В начале 2015 года МЦСТ представила 8 ядерный Эльбрус-8С, выполненный по технологии 28 нм. Почти тогда же компания Т-платформы анонсировала свой 28 нм процессор Baikal, основанный на лицензионном ARM Cortex А57.

Итоги


Исходя из 2 графиков можно сделать следующие выводы относительно советской и российской микроэлектронной промышленности:
1) Несмотря на то, что темпы перехода на новые технологические процессы в России до 2014 года в сравнении с СССР, немного увеличились, отставание по тех. процессу в среднем увеличилось.
2) Технологическое отставание хоть и довольно большое, но меньше, чем многие себе представляют.
3) Если пересчитывать только с процессорами произведенными в России, то картина будет несколько хуже. Однако опыт производства своих процессоров в других странах, есть у многих стран. Кроме того производитель зарабатывает всего 10-15%.

Анализ недалекого будущего говорит о том, что отставание до 2020 по годам зафиксируется на 4-5 годах. В плане МСЦТ по развитию микроэлектроники на 2018 год запланирован переход к 16 нм (14 нм уже сейчас осваивают конкуренты), к 2020 переход к 10 нм (столько же у конкурентов к 2016 году).

Вероятно, для более динамичного развития нужны куда большие инвестиции и бизнес-план, построенный не на оборонных заказах, а на рядовом потребителе.

Технологии производства и изготовления процессоров ( CPU )

Технологии производства и изготовления процессоров ( CPU )

Микропроцессор — это интегральная схема, сформированная на маленьком кристалле кремния. Кремний применяется в микросхемах в силу того, что он обладает полупроводниковыми свойствами: его электрическая проводимость больше, чем у диэлектриков, но меньше, чем у металлов. Кремний можно сделать как изолятором, препятствующим движению электрических зарядов, так и проводником — тогда электрические заряды будут свободно проходить через него. Проводимостью полупроводника можно управлять путем введения примесей.

Микропроцессор содержит миллионы транзисторов, соединенных между собой тончайшими проводниками из алюминия или меди и используемых для обработки данных. Так формируются внутренние шины. В результате микропроцессор выполняет множество функций – от математических и логических операций до управления работой других микросхем и всего компьютера.

Один из главных параметров работы микпроцессора – частота работы кристалла, определяющая количество операций за единицу времени, частота работы системной шины, объем внутренней кэш-памяти SRAM. По частоте работы кристалла маркируют процессор. Частота работы кристалла определяется частотой переключений транзисторов из закрытого состояния в открытое. Возможность транзистора переключаться быстрее определяется технологией производства кремниевых пластин, из которых делаются чипы. Размерность технологического процесса определяет размеры транзистора (его толщину и длину затвора). Например, при использовании 90-нм техпроцесса, который был введен в начале 2004 года, размер транзистора составляет 90 нм, а длина затвора – 50 нм.

Все современные процессоры используют полевые транзисторы. Переход к новому техпроцессу позволяет создавать транзисторы с большей частотой переключения, меньшими токами утечки, меньших размеров. Уменьшение размеров позволяет одновременно уменьшить площадь кристалла, а значит и тепловыделение, а более тонкий затвор позволяет подавать меньшее напряжение для переключения, что также снижает энергопотребление и тепловыделение.

Технологическая норма 90 нм оказалась достаточно серьезным технологическим барьером для многих производителей чипов. Это подтверждает и компания TSMC, которая занимается производством чипов для многих гигантов рынка, таких как компании AMD, nVidia, ATI, VIA. Долгое время ей не удавалось наладить производство чипов по технологии 0,09 мкм, что привело к низкому выходу годных кристаллов. Это одна из причин, по которой AMDдолгое время переносила выпуск своих процессоров с технологией SOI (Silicon-on-Insulator). Связано это с тем, что именно на этой размерности элементов стали сильно проявляться всевозможные ранее не столь сильно ощутимые негативные факторы как токи утечки, большой разброс параметров и экспоненциальное повышение тепловыделения.

Существует два тока утечки: ток утечки затвора и подпороговая утечка.

Первая вызвана самопроизвольным перемещением электронов между кремниевым субстратом канала и поликремневым затвором. Вторая – самопроизвольным перемещением электронов из истока транзистора в сток. Оба эти эффекта приводят к тому, что приходится поднимать напряжение питания для управления токами в транзисторе, что негативно сказывается на тепловыделении. Так вот, уменьшая размеры транзистора, прежде всего уменьшается его затвор и слой диоксида кремния (SiO2), который является естественным барьером между затвором и каналом.

С одной стороны это улучшает скоростные показатели транзистора (время переключения), но с другой – увеличивает утечку. То есть, получается своеобразный замкнутый цикл. Так вот переход на 90 нм – это очередное уменьшение толщины слоя диоксида, и одновременно увеличение утечек. Борьба с утечками – это опять же, увеличение управляющих напряжений, и, соответственно, значительное повышение тепловыделения. Все это привело к задержке внедрения нового техпроцесса со стороны конкурентов рынка микропроцессоров – Intel и AMD.

Один из альтернативных выходов – это применение технологии SOI (кремний на изоляторе), которое недавно внедрила компания AMD в своих 64-разрядных процессорах. Впрочем, это стоило ей немало усилий и преодоление большого количества попутных трудностей. Зато сама технология предоставляет громадное количество преимуществ при сравнительно малом количестве недостатков.

Суть технологии, в общем-то, вполне логична — транзистор отделяется от кремневой подложки еще одним тонким слоем изолятора. Плюсов — масса. Никакого неконтролируемого движения электронов под каналом транзистора, сказывающегося на его электрических характеристиках — раз. После подачи отпирающего тока на затвор, время ионизации канала до рабочего состояния, до момента, пока по нему пойдет рабочий ток, сокращается, то есть, улучшается второй ключевой параметр производительности транзистора, время его включения/выключения — это два. Или же, при той же скорости, можно просто понизить отпирающий ток — три. Или найти какой-то компромисс между увеличением скорости работы и уменьшением напряжения. При сохранении того же отпирающего тока, увеличение производительности транзистора может составить вплоть до 30%, если оставить частоту той же, делая упор на энергосбережение, то там плюс может быть и большим — до 50 %.

Наконец, характеристики канала становятся более предсказуемыми, а сам транзистор становится более устойчивым к спорадическим ошибкам, вроде тех, что вызывают космические частицы, попадая в субстрат канала, и непредвиденно ионизируя его. Теперь, попадая в подложку, расположенную под слоем изолятора, они никак не сказываются на работе транзистора. Единственным минусом SOI является то, что приходится уменьшать глубину области эмиттер/коллектор, что прямо и непосредственно сказывается на увеличении ее сопротивления по мере сокращения толщины.

И наконец, третья причина, которая способствовала замедлению темпов роста частот – это низкая активность конкурентов на рынке. Можно сказать, каждый был занят своими делами. AMD занималась повсеместным внедрением 64-битных процессоров, для Intel это был период усовершенствования нового техпроцесса, отладки для увеличенная выхода годных кристаллов

Итак, необходимость перехода на новые техпроцессы очевидна, но технологам это дается каждый раз все с большим трудом. Первые микропроцессорыPentium (1993 г.) производились по техпроцессу 0,8 мкм, затем по 0,6 мкм. В 1995 году впервые для процессоров 6-го поколения был применен техпроцесс 0,35 мкм. В 1997 году он сменился на 0,25 мкм, а в 1999 – на 0,18 мкм. Современные процессоры выполняются по технологии 0,13 и 0,09 мкм, причем последняя была введена в 2004 году. Как видно, для этих техпроцессов соблюдается закон Мура, который гласит, что каждые два года частота кристаллов удваивается при увеличении количества транзисторов с них. С такими же темпами сменяется и техпроцесс. Правда, в дальнейшем «гонка частот» опередит этот закон. К 2006 году компания Intel планирует освоение 65-нм техпроцесса, а 2009 – 32-нм.

Здесь пора вспомнить структуру транзистора, а именно — тонкий слой диоксида кремния, изолятора, находящегося между затвором и каналом, и выполняющего вполне понятную функцию — барьера для электронов, предотвращающего утечку тока затвора.

Очевидно, что чем толще этот слой, тем лучше он выполняет свои изоляционные функции, но он является составной частью канала, и не менее очевидно, что если мы собираемся уменьшать длину канала (размер транзистора), то нам надо уменьшать его толщину, причем, весьма быстрыми темпами. К слову говоря, за последние несколько десятилетий толщина этого слоя составляет в среднем порядка 1/45 от всей длины канала. Но у этого процесса есть свой конец — как утверждал пять лет назад все тот же Intel, при продолжении использования SiO2, как это было на протяжении последних 30 лет, минимальная толщина слоя будет составлять 2.3 нм, иначе ток утечка тока затвора приобретет просто нереальные величины.

Для снижения подканальной утечки до последнего времени ничего не предпринималось, сейчас ситуация начинает меняться, поскольку рабочий ток, наряду со временем срабатывания затвора, является одним из двух основных параметров, характеризующих скорость работы транзистора, а утечка в выключенном состоянии на нем непосредственно сказывается — для сохранения требуемой эффективности транзистора приходится, соответственно, поднимать рабочий ток, со всеми вытекающими условиями.

 

Изготовление микропроцессора — это сложнейший процесс, включающий более 300 этапов. Микропроцессоры формируются на поверхности тонких круговых пластин кремния — подложках, в результате определенной последовательности различных процессов обработки с использованием химических препаратов, газов и ультрафиолетового излучения.

Подложки обычно имеют диаметр 200 миллиметров, или 8 дюймов. Однако корпорация Intel уже перешла на пластины диаметром 300 мм, или 12 дюймов. Новые пластины позволяют получить почти в 4 раза больше кристаллов, и выход годных значительно выше. Пластины изготавливают из кремния, который очищают, плавят и выращивают из него длинные цилиндрические кристаллы. Затем кристаллы разрезают на тонкие пластины и полируют их до тех пор, пока их поверхности не станут зеркально гладкими и свободными от дефектов. Далее последовательно циклически повторяясь производят термическое оксидирование (формирование пленки SiO2), фотолитографию, диффузию примеси (фосфор), эпитаксию (наращивание слоя).

В процессе изготовления микросхем на пластины-заготовки наносят в виде тщательно рассчитанных рисунков тончайшие слои материалов. На одной пластине помещается до нескольких сотен микропроцессоров, для изготовления которых требуется совершить более 300 операций. Весь процесс производства процессоров можно разделить на несколько этапов: выращивание диоксида кремния и создание проводящих областей, тестирование, изготовление корпуса и доставка.

Процесс производства микропроцессора начинается с «выращивания» на поверхности отполированной пластины изоляционного слоя диоксида кремния. Осуществляется этот этап в электрической печи при очень высокой температуре. Толщина оксидного слоя зависит от температуры и времени, которое пластина проводит в печи.

 

Затем следует фотолитография — процесс, в ходе которого на поверхности пластины формируется рисунок-схема. Сначала на пластину наносят временный слой светочувствительного материала – фоторезист, на который с помощью ультрафиолетового излучения проецируют изображение прозрачных участков шаблона, или фотомаски. Маски изготавливают при проектировании процессора и используют для формирования рисунков схем в каждом слое процессора. Под воздействием излучения засвеченные участки фотослоя становятся растворимыми, и их удаляют с помощью растворителя (плавиковая кислота), открывая находящийся под ними диоксид кремния.

Открытый диоксид кремния удаляют с помощью процесса, который называется «травлением«. Затем убирают оставшийся фотослой, в результате чего на полупроводниковой пластине остается рисунок из диоксида кремния. В результате ряда дополнительных операций фотолитографии и травления на пластину наносят также поликристаллический кремний, обладающий свойствами проводника.

В ходе следующей операции, называемой «легированием«, открытые участки кремниевой пластины бомбардируют ионами различных химических элементов, которые формируют в кремнии отрицательные и положительные заряды, изменяющие электрическую проводимость этих участков.

 

Наложение новых слоев с последующим травлением схемы осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются «окна», которые заполняют металлом, формируя электрические соединения между слоями. В своем 0.13-микронном технологическом процессе корпорация Intel применила медные проводники. В 0.18-микронном производственном процессе и процессах предыдущих поколений Intel применяла алюминий. И медь, и алюминий — отличные проводники электричества. При использовании 0,18-мкм техпроцесса использовалось 6 слоев, при внедрении 90 нм техпроцесса в 2004 году применили 7 слоев кремния.

Каждый слой процессора имеет свой собственный рисунок, в совокупности все эти слои образуют трехмерную электронную схему. Нанесение слоев повторяют 20 — 25 раз в течение нескольких недель.

Чтобы выдержать воздействия, которым подвергаются подложки в процессе нанесения слоев, кремниевые пластины изначально должны быть достаточно толстыми. Поэтому прежде чем разрезать пластину на отдельные микропроцессоры, ее толщину с помощью специальных процессов уменьшают на 33% и удаляют загрязнения с обратной стороны. Затем на обратную сторону «похудевшей» пластины наносят слой специального материала, который улучшает последующее крепление кристалла к корпусу. Кроме того, этот слой обеспечивает электрический контакт между задней поверхностью интегральной схемы и корпусом после сборки.

После этого пластины тестируют, чтобы проверить качество выполнения всех операций обработки. Чтобы определить, правильно ли работают процессоры, проверяют их отдельные компоненты. Если обнаруживаются неисправности, данные о них анализируют, чтобы понять, на каком этапе обработки возник сбой.

Затем к каждому процессору подключают электрические зонды и подают питание. Процессоры тестируются компьютером, который определяет, удовлетворяют ли характеристики изготовленных процессоров заданным требованиям.

После тестирования пластины отправляются в сборочное производство, где их разрезают на маленькие прямоугольники, каждый из которых содержит интегральную схему. Для разделения пластины используют специальную прецизионную пилу. Неработающие кристаллы отбраковываются.

Затем каждый кристалл помещают в индивидуальный корпус. Корпус защищает кристалл от внешних воздействий и обеспечивает его электрическое соединение с платой, на которую он будет впоследствии установлен. Крошечные шарики припоя, расположенные в определенных точках кристалла, припаивают к электрическим выводам корпуса. Теперь электрические сигналы могут поступать с платы на кристалл и обратно.

В будущих процессорах компания Intel применит технологию BBUL, которая позволит создавать принципиально новые корпуса с меньшим тепловыделением и емкостью между ножками CPU.

После установки кристалла в корпус процессор снова тестируют, чтобы определить, работоспособен ли он. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям: воздействию различных температурных и влажностных режимов, а также электростатических разрядов. После каждого нагрузочного испытания процессор тестируют для определения его функционального состояния. Затем процессоры сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

Процессоры, прошедшие тестирование, поступают на выходной контроль, задача которого — подтвердить, что результаты всех предыдущих тестов были корректными, а параметры интегральной схемы соответствуют установленным стандартам или даже превосходят их. Все процессоры, прошедшие выходной контроль, маркируют и упаковывают для доставки заказчикам.

Поделиться ссылкой:

Похожее

Производство процессора компьютера: технологический процесс

Несколько лет тому назад компания Intel представила пошаговый процесс производства микропроцессоров: от песка до конечного продукта. Фактически процесс производства полупроводниковых элементов выглядит поистине удивительным.

Шаг 1. Песок

Первый этап производства процессора: от песка до кремниевого слитка

Кремний, составляющий по общей массе около 25 процентов всех химических элементов в земной коре, является вторым по распространению после кислорода. Песок имеет высокое процентное содержание диоксида кремния (SiO2), который является основным ингредиентом не только для производства процессоров Intel, но и вообще для полупроводникового производства.

Расплавленный кремний

Вещество очищается в течение нескольких этапов, пока не получится кремний полупроводниковой чистоты, используемый в полупроводниках. В конечном счете, он поступает в виде монокристаллических слитков диаметром около 300 миллиметров (12 дюймов). Ранее слитки имели диаметр 200 миллиметров (8 дюймов), а в далеком 1970 году – еще меньше – 50 миллиметров (2 дюйма).

На данном уровне производства процессоров после очистки чистота кристалла составляет один атом примеси на миллиард атомов кремния. Вес слитка составляет 100 килограмм.

Шаг 3. Нарезание слитка

Слиток нарезается очень тонкой пилой на отдельные ломтики, называемые подложками. Каждая из них впоследствии полируется, чтобы получилась бездефектная зеркально-гладкая поверхность. Именно на эту гладкую поверхность впоследствии будут наноситься крошечные медные провода.

Экспонирование фоторезистивного слоя

На вращающуюся с высокой скоростью подложку заливается фоторезистивная жидкость (такие же материалы используются в традиционной фотографии). При вращении на всей поверхности подложки образуется тонкий и равномерный резистивный слой.

Ультрафиолетовый лазер через маски и линзу воздействует на поверхность подложки, образуя на ней небольшие освещенные ультрафиолетовые линии. Линза делает сфокусированное изображение в 4 раза меньше маски. Везде, где ультрафиолетовые линии воздействуют на резистивный слой, возникает химическая реакция, в результате которой данные участки становятся растворимыми.

Нанесение фоторезистивного слоя

Шаг 5. Травление

Растворимый фоторезистивный материал затем полностью растворяется с помощью химического растворителя. Таким образом, для частичного растворения или травления небольшого количества полированного полупроводникового материала (подложки) используется химический травитель. Оставшаяся часть фоторезистивного материала удаляется путем похожего процесса промывки, открывая (экспонируя) протравленную поверхность подложки.

Формирование слоев

Для создания крошечных медных проводов, которые в конечном счете будут передавать электричество к/от различных соединителей, добавляются дополнительные фоторезисты (светочувствительные материалы), которые также промываются и экспонируются. В дальнейшем выполняется процесс ионного легирования для добавления примесей и защиты мест осаждения ионов меди от медного купороса во время процесса гальваностегии.

На различных этапах этих процессов производства процессора добавляются дополнительные материалы, которые протравливаются и полируются. Данный процесс повторяется 6 раз для формирования 6 слоев.

Конечный продукт выглядит как сетка из множества микроскопических медных полос, проводящих электричество. Некоторые из них соединены с другими, а некоторые – расположены на определенном расстоянии от других. Но все они используются для реализации одной цели – для передачи электронов. Другими словами, они предназначены для обеспечения так называемой «полезной работы» (например, сложение двух чисел с максимально возможной скоростью, что является сутью модели вычислений в наши дни).

Многоуровневая обработка повторяется на каждом отдельном небольшом участке поверхности подложки, на котором будут изготовлены чипы. В том числе к таким участкам относятся те из них, которые частично расположены за пределами подложки.

Шаг 7. Тестирование

Как только будут нанесены все металлические слои и созданы все транзисторы, наступает время следующего этапа производства процессоров «Интел» – тестирования. Устройство с множеством штырьков размещается в верхней части чипа. К нему прикрепляется множество микроскопических проводков. Каждый такой проводок имеет электрическое соединение с чипом.

Для воспроизведения работы чипа ему передается последовательность тестовых сигналов. При тестировании проверяются не только традиционные вычислительные способности, но также выполняется внутренняя диагностика с определением значений напряжения, каскадных последовательностей и другие функции. Ответ чипа в виде результата тестирования сохраняется в базе данных, специально выделенной для данного участка подложки. Данный процесс повторяется для каждого участка подложки.

Нарезание пластин

Для нарезания пластин применяется очень маленькая пила с алмазным наконечником. База данных, заполненная на предыдущем этапе, используется для определения, какие чипы, отрезанные от подложки, сохранены, а какие отброшены.

Шаг 9. Заключение в корпуса

Все рабочие пластины помещаются в физические корпуса. Несмотря на то, что пластины были предварительно протестированы и в отношении их было принято решение, что они работают корректно, это не означает, что они являются хорошими процессорами.

Процесс заключения в корпуса означает помещение кремниевого кристалла в материал подложки, к контактам или массиву шариковых выводов которого подсоединены миниатюрные золотые проводки. Массив шариковых выводов можно обнаружить на обратной стороне корпуса. В верхней части корпуса устанавливается теплоотвод. Он представляет собой металлический корпус. По завершении этого процесса центральный процессор выглядит как готовый продукт, предназначенный для потребления.

Примечание: металлический теплоотвод является ключевым компонентом современных высокоскоростных полупроводниковых устройств. Раньше теплоотводы были керамическими и не использовали принудительное охлаждение. Оно потребовалось для некоторых моделей 8086 и 80286 и для моделей, начиная с 80386. Предшествующие поколения процессоров имели намного меньше транзисторов.

Например, процессор 8086 имел 29 тысяч транзисторов, в то время как современные центральные процессоры имеют сотни миллионов транзисторов. Столь маленькое по нынешним меркам количество транзисторов не вырабатывало достаточно тепла, чтобы требовалось активное охлаждение. Чтобы отделить данные процессоры от нуждающихся в таком типе охлаждения, впоследствии на керамические чипы ставилось клеймо «Требуется теплоотвод».

Современные процессоры генерируют достаточно тепла, чтобы расплавиться в считанные секунды. Только наличие теплоотвода, подсоединенного к большому радиатору и вентилятору, позволяет им функционировать в течение продолжительного времени.

Жизненный цикл центрального процессора

Сортировка процессоров по характеристикам

К этому этапу производства процессор выглядит таким, каким его покупают в магазине. Однако для завершения процесса его производства требуется еще один этап. Он называется сортировкой.

На этом этапе измеряются действительные характеристики отдельного центрального процессора. Измеряются такие параметры, как напряжение, частота, производительность, тепловыделение и другие характеристики.

Лучшие чипы откладываются как изделия более высокого класса. Они продаются не только как самые быстрые компоненты, но и как модели с низким и сверхнизким напряжением.

Чипы, которые не вошли в группу лучших процессоров, часто продаются как процессоры с более низкими тактовыми частотами. Кроме того, четырехъядерные процессоры более низкого класса могут продаваться как двух- или трехъядерные.

Производительность процессоров

Уменьшение толщины транзистора в 14-нм процессе по сравнению с 22-нм процессом

В процессе сортировки определяются конечные значения скорости, напряжения и тепловые характеристики. Например, на стандартной подложке только 5 % произведенных чипов могут функционировать на частоте более 3,2 ГГц. В то же время 50 % чипов могут функционировать на частоте 2,8 ГГц.

Производители процессоров постоянно выясняют причины, почему основная часть производимых процессоров работает на частоте 2,8 ГГц вместо требуемой 3,2 ГГц. Иногда для увеличения производительности в конструкцию процессора могут быть внесены изменения.

Рентабельность производства

Рентабельность бизнеса по производству процессоров и большинства полупроводниковых элементов лежит в пределах 33-50 %. Это означает, что, по меньшей мере, от 1/3 до 1/2 пластин на каждой подложке рабочие, а компания в этом случае рентабельна.

У компании Intel операционная прибыль при применении технологии 45 нм для подложки 300 мм составляет 95 %. Это означает, что если из одной подложки возможно изготовить 500 кремниевых пластин, 475 из них будут рабочими и только 25 будут выброшены. Чем больше пластин можно получить с одной подложки, тем большую прибыль будет иметь компания.

Технологии Intel, используемые в наши дни

Инновационное лидерство Intel

История применения новых технологий Intel для массового производства процессоров:

  • 1999 г. – 180 нм;
  • 2001 г. – 130 нм;
  • 2003 г. – 90 нм;
  • 2005 г. – 65 нм;
  • 2007 г. – 45 нм;
  • 2009 г. – 32 нм;
  • 2011 г. – 22 нм;
  • 2014 г. – 14 нм;
  • 2019 г. – 10 нм (планируется).

В начале 2018 г. компания Intel объявила о переносе массового производства 10-нм процессоров на 2019 год. Причина этого – в большой стоимости производства. На данный момент компания продолжает поставлять 10-нм процессоры в небольших объемах.

Охарактеризуем технологии производства процессоров Intel с точки зрения стоимости. Дороговизну технологического процесса руководство компании объясняет длинным производственным циклом и применением большого количества масок. В основе 10-нм технологии лежит глубокая ультрафиолетовая литография (DUV) с применением лазеров, работающих на длине волны 193 нм.

Для 7-нм процесса будет использоваться экстремальная ультрафиолетовая литография (EUV) с применением лазеров, работающих на длине волны 13,5 нм. Благодаря такой длине волны удастся избежать применения мультипаттернов, широко используемых для 10-нм процесса.

Инженеры компании считают, что на данный момент нужно отшлифовать технологию DUV, а не прыгать напрямую на 7-нм процесс. Таким образом, пока будут снятыми с производства процессоры, использующие 10-нм технологию.

10-нм процессор Kaby Lake-G

Перспективы микропроцессорного производства компании AMD

Единственным реальным конкурентом «Интел» на рынке производства процессоров на сегодняшний день является AMD. Из-за ошибок «Интел», связанных с 10-нм технологией, AMD немного поправила свое положение на рынке. У Intel массовое производство с использованием технологического процесса 10 нм сильно запоздало. Компания AMD, как известно, использует для производства своих чипов третью сторону. И теперь сложилась ситуация, когда AMD для производства использует во всю 7-нм технологии производства процессоров, не уступающие главному конкуренту.

Основными сторонними производителями полупроводниковых устройств с использованием новых технологий для сложной логики являются Тайваньская компания производства полупроводников (TSMC), американская компания GlobalFoundaries и корейская Samsung Foundry.

AMD планирует использовать TSMC исключительно для производства микропроцессоров следующего поколения. При этом будут применяться новые технологии производства процессоров. Компания уже выпустила ряд продуктов с применением 7-нм процесса, включая 7-нм графический процессор. Первый планируется выпустить в 2019 г. Уже через 2 года планируется начать массовое производство 5-нм микросхем.

GlobalFoundaries отказалась от разработки процесса 7 нм, чтобы сосредоточить свои усилия на развитии своих 14/12 нм процессов для клиентов, ориентированных на быстрорастущие рынки. AMD вкладывает в GlobalFoundaries дополнительные инвестиции для производства процессоров AMD текущего поколения Ryzen, EPYC и Radeon.

7-нм процессор AMD EPYC

Производство микропроцессоров в России

Основные микроэлектронные производства расположены в городах Зеленоград («Микрон», «Ангстрем») и Москва («Крокус»). Собственное микроэлектронное производство имеется также и в Беларуси – компания «Интеграл», использующая технологический процесс 0,35 мкм.

Производством процессоров в России занимаются компании «МЦСТ» и «Байкал Электроникс». Последняя разработка «МЦСТ» – процессор «Эльбрус-8С». Это 8-ядерный микропроцессор с тактовой частотой 1,1-1,3 ГГц. Производительность российского процессора составляет 250 гигафлопс (операций с плавающей запятой в секунду). Представителями компании заявляется, что по ряду показателей процессор может конкурировать даже с лидером отрасли – компанией Intel.

Производство процессоров «Эльбрус» продолжится моделью «Эльбрус-16» частотой 1,5 ГГц (цифровой индекс в названии обозначает количество ядер). Массовое изготовление этих микропроцессоров будет осуществляться в Тайване. Это должно способствовать уменьшению цены. Как известно, цена на продукцию компании заоблачная. При этом, по характеристикам комплектующие значительно уступают ведущим компаниям в этом секторе экономики. Пока такие процессоры будут использоваться только в государственных организациях и для оборонных целей. В качестве технологии производства процессоров этой линейки будет применяться 28-нм технологический процесс.

«Байкал Электроникс» производит процессоры, предназначенные для использования в промышленности. В частности, это относится к модели «Байкал Т1». Область ее применения – маршрутизаторы, системы с ЧПУ и офисная техника. Компания на этом не останавливается и уже разрабатывается процессор для персональных компьютеров – «Байкал М». Сведений о его характеристиках пока немного. Известно, что у него будет 8-ядерный процессор с поддержкой до 8 графических ядер. Преимущество этого микропроцессора будет заключаться в его энергоэффективности.

Samsung освоила производство 5 нм процессоров раньше Intel и AMD

7857

, Текст: Эльяс Касми

Samsung полностью готова к производству мобильных процессоров по новой 5-нанометровой технологии, которая обеспечит чипам прирост производительности и снижение энергопотребления. Для этого она уже оборудовала соответствующую производственную линию и даже строит целую отдельную фабрику.

Первая в мире?

Компания Samsung сообщила об успешном завершении разработки сверхсовременного 5-нанометрового техпроцесса – норм, которые на апрель 2019 г. в массовом производстве не использует ни один производитель. Технология получила название FinFET EUV, и Samsung уже начала принимать пробные заказы на производство первых партий микросхем.

В FinFET EUV для формирования слоя металлизации используется принцип фотолитографии в глубоком (экстремальном) ультрафиолетовом диапазоне. Эта технология уже доказала свою эффективность в ранее освоенном Samsung 7-нанометровом техпроцессе.

Готовность к производству

Сроки выпуска первых пилотных партий 5-нанометровых чипов Samsung не называет. Новые нормы уже освоены на фабрике S3 в Хвасоне (Южная Корея). Вторая половина 2019 г. ознаменуется завершением строительства новой производственной линии в непосредственной близости от S3, которая с начала своей работы будет выпускать продукцию по нормам 5 нм.

Строительство 5-нанометровой фабрики Samsung

Оба предприятия также смогут производить 7-нанометровые решения. К тому же, у Samsung уже готовы «переходные» 6-нанометровые нормы.

Семимильными шагами

Переход Samsung к 5 нм оказался стремительным – производство чипов по 7-нанометровым нормам компания запустила буквально осенью 2018 г. Это стало возможным, в частности, за счет сохранения совместимости с 7 нм проектных элементов (IP), инструментов проектирования и контроля процессов проектирования и производства.

Мобильные процессоры Samsung — небольшие, но в то же время мощные и сверхсовременные

Подобный подход позволил Samsung не только перейти на более перспективный техпроцесс раньше всех, но радикально снизить затраты на освоение новой технологии.

Между тем, нельзя не отметить, что в самых актуальных смартфонах Samsung серии Galaxy S10, несмотря на все достижения корейского вендора, используется процессор Exynos 9820, произведенный по 8-нанометровым нормам. И лишь для рынков США и Китая эти телефоны доступны с 7-нанометровым чипом, правда, уже с Qualcomm Snapdragon 855.

TSMC впереди

Один из главных конкурентов Samsung в сегменте производства процессоров – это тайваньская компания TSMC, не жалеющая денег на развитие деятельности и, как и Samsung, успешно достигающая своей цели. Так, если Samsung запустила 7-нанометровое производство осенью 2018 г., то TSMC сделала то же самое практически на полгода раньше, в мае 2018 г. Фактически, первыми в мире процессорами 7 нм, сошедшими с конвейера, стали Apple A12, работающие в смартфонах iPhone XS, XS Max и XR.

Роадмап TSMC на ближайшие годы предвещает скорый переход на невероятные 2 нанометра

С 5 нанометрами ситуация схожая, разве что разрыв между датами анонса новой технологии сократился с нескольких месяцев до нескольких дней. О своей готовности к тестовому производству 5-нанометровых чипов TSMC заявила 10 апреля 2019 г., но пока неизвестно, кто войдет в список ее клиентов.

К переходу на 5 нм TSMC начала готовиться еще в июне 2018 г. с заявления о планах по вложению в этот процесс $25 млрд. Часть этих средств компания планировала затратить на строительство новой фабрики в Южно-Тайваньском научном парке в Тайнане. Массовое 5-нанометровое производство TSMC надеется развернуть к концу 2019 г.

Преимущества 5 нм

По заверениям Samsung, новый техпроцесс существенно лучше «старого» 7 нм. В сравнении с ним, 5-нанометровые чипы обладают повышенной на 10% производительностью и потребляют на 25% меньше энергии, что обеспечит более длительное время автономной работы мобильных устройств. Также новая технология гарантирует 25-процентное повышение плотности компоновки логических цепей и уменьшение количества фотомасок, необходимых для производства полупроводников.

Настольные процессоры

AMD и Intel, производители процессоров для настольных ПК, серверов и ноутбуков, уже не могут угнаться за Samsung и TSMC. Шансы пока сохраняются лишь у AMD, которая в IV квартале 2018 г. успешно освоила техпроцесс 7 нм, хотя производство своих чипов она заказывает все у той же TSMC.

Что до Intel, то в гонке за нанометрами она в числе отстающих. По состоянию на апрель 2019 г. компания так толком и не перешла даже на 10 нанометров, и массовое производство соответствующих ее чипов может начаться лишь в 2020 г. Сложившаяся ситуация может повлиять на захват рынка ноутбуков моделями на процессорах ARM, тем более что соответствующие решения крупные производители техники предлагают с 2017 г, а поддержка ARM-архитектуры уже давно интегрирована в ОС Windows 10.



Технологический процесс в электронной промышленности

Процессор Apple.

Технологический процесс полупроводникового производства — технологический процесс изготовления полупроводниковых (п/п) изделий и материалов, и состоит из последовательности технологических (обработка, сборка) и контрольных операций, часть производственного процесса производства п/п изделий (транзисторов, диодов и тп.).

При производстве п/п интегральных микросхем применяется фотолитография и литографическое оборудование. Разрешающая способность (в мкм и нм) этого оборудования (т. н. проектные нормы) и определяет название применяемого конкретного технологического процесса.

Совершенствование технологии и пропорциональное уменьшение размеров п/п структур способствуют улучшению характеристик (размеры, энергопотребление, стоимость) полупроводниковых приборов (микросхем, процессоров, микроконтроллеров и тд.). Особую значимость это имеет для процессорных ядер, в аспектах потребления электроэнергии и повышения производительности, поэтому ниже указаны процессоры (ядра) массового производства на данном техпроцессе.

Содержание

Этапы технологического процесса

Пластина монокристаллического кремния с готовыми микросхемами

Технологический процесс производства полупроводниковых приборов и интегральных микросхем (микропроцессоров, модулей памяти и др.) включает нижеследующие операции.

  • Механическую обработку полупроводниковых пластин — получают пластины полупроводника со строго заданной геометрией, нужной кристаллографической ориентацией (не хуже ±5 %) и классом чистоты поверхности. Эти пластины в дальнейшем служат заготовками в производстве приборов или подложками для нанесения эпитаксиального слоя.
  • Химическую обработку (предшествующую всем термическим операциям) — удаление механически нарушенного слоя полупроводника и очистка поверхности пластины. Основные методы химической обработки: жидкостное и газовое травление, плазмохимические методы. Для получения на пластине рельефа (профилирование поверхности) в виде чередующихся выступов и впадин определённой геометрии, для вытравливания окон в маскирующих покрытиях, для проявления скрытого изображения в слое экспонированного фоторезиста, для удаления его заполимеризированных остатков, для получения контактных площадок и разводки в слое металлизации применяют химическую (электрохимическую) обработку.
  • Эпитаксиальное наращивание слоя полупроводника — осаждение атомов полупроводника на подложку, в результате чего на ней образуется слой, кристаллическая структура которого подобна структуре подложки. При этом подложка часто выполняет лишь функции механического носителя.
  • Получение маскирующего покрытия — для защиты слоя полупроводника от проникновения примесей на последующих операциях легирования. Чаще всего проводится путём окисления эпитаксиального слоя кремния в среде кислорода при высокой температуре.
  • Фотолитография — производится для образования рельефа в диэлектрической плёнке.
  • Введение электрически активных примесей в пластину для образования отдельных p- и n-областей — нужно для создания электрических переходов, изолирующих участков. Производится методом диффузии из твёрдых, жидких или газообразных источников, основными диффузантами в кремний являются фосфор и бор.
Термическая диффузия — направленное перемещение частиц вещества в сторону убывания их концентрации: определяется градиентом концентрации. Часто применяется для получения введения легирующих примесей в полупроводниковые пластины (или выращенные на них эпитаксиальные слои) для получения противоположного, по сравнению с исходным материалом, типа проводимости, либо элементов с более низким электрическим сопротивлением.
Ионное легирование (применяемое при изготовлении полупроводниковых приборов с большой плотностью переходов, солнечных батарей и СВЧ-структур) определяется начальной кинетической энергией ионов в полупроводнике и выполняется в два этапа:
  1. в полупроводниковую пластину на вакуумной установке внедряют ионы
  2. производится отжиг при высокой температуре
В результате восстанавливается нарушенная структура полупроводника и ионы примеси занимают узлы кристаллической решётки.
  • Получение омических контактов и создание пассивных элементов на пластине — с помощью фотолитографической обработки в слое оксида, покрывающем области сформированных структур, над предварительно созданными сильно легированными областями n+— или p+-типа, которые обеспечивают низкое переходное сопротивление контакта, вскрывают окна. Затем, методом вакуумного напыления всю поверхность пластины покрывают слоем металла (металлизируют), излишек металла удаляют, оставив его только на местах контактных площадок и разводки. Полученные таким образом контакты, для улучшения адгезии материала контакта к поверхности и уменьшения переходного сопротивления, термически обрабатывают (операция вжигания). В случае напыления на материал оксида специальных сплавов получают пассивные тонкоплёночные элементы — резисторы, конденсаторы, индуктивности.
  • Добавление дополнительных слоев металла (в современных процессах — около 10 слоев), между слоями располагают диэлектрик (англ. inter-metal dielectric, IMD) со сквозными отверстиями.
  • Пассивация поверхности пластины. Перед контролем кристаллов необходимо очистить их внешнюю поверхность от различных загрязнений. Более удобной (в технологическом плане) является очистка пластин непосредственно после скрайбирования или резки диском, пока они ещё не разделены на кристаллы. Это целесообразно и потому, что крошки полупроводникового материала, образуемые при скрайбировании или надрезании пластин, потенциально являются причиной появления брака при размалывании их на кристаллы с образованием царапин при металлизации. Наиболее часто пластины очищают в деионизированной воде на установках гидромеханической (кистьевой) отмывки, а затем сушат на центрифуге, в термошкафу при температуре не более 60° C или инфракрасным нагревом. На очищенной пластине определяются дефекты вносимые операцией скрайбирования и разламывания пластин на кристаллы, а также ранее проводимых операциях — фотолитографии, окислении, напылении, измерении (сколы и микротрещины на рабочей поверхности, царапины и другие повреждения металлизации, остатки оксида на контактных площадках, различные остаточные загрязнения в виде фоторезиста, лака, маркировочной краски и т.п.).
  • Тестирование неразрезанной пластины. Обычно это испытания зондовыми головками на установках автоматической разбраковки пластин. В момент касания зондами разбраковываемых структур измеряются электрические параметры. В процессе маркируются бракованные кристаллы, которые затем отбрасываются. Линейные размеры кристаллов обычно не контролируют, так как их высокая точность обеспечивается механической и электрохимической обработкой поверхности (толщина) и последующим скрайбированием (длина и ширина).
  • Разделение пластин на кристаллы — механически разделяет (разрезанием) пластину на отдельные кристаллы.
  • Сборка кристалла и последующие операции монтажа кристалла в корпус и герметизация — присоединение к кристаллу выводов и последующая упаковка в корпус, с последующей его герметизацией.
  • Электрические измерения и испытания — проводятся с целью отбраковки изделий, имеющих несоответствующие технической документации параметры. Иногда специально выпускаются микросхемы с «открытым» верхним пределом параметров, допускающих впоследствии работу в нештатных для остальных микросхем режимах повышенной нагрузки (см., например, Разгон компьютеров).
  • Выходной контроль (англ.), завершающий технологический цикл изготовления устройства весьма важная и сложная задача (так, для проверки всех комбинаций схемы, состоящей из 20 элементов с 75 (совокупно) входами, при использовании устройства работающего по принципу функционального контроля со скоростью 104 проверок в секунду, потребуется 1019 лет!)
  • Маркировка, нанесение защитного покрытия, упаковка — завершающие операции перед отгрузкой готового изделия конечному потребителю.
Для выполнения требований электронной производственной гигиены строят особо чистые помещения («чистые комнаты»), в которых люди могут находиться только в специальной одежде

Технологии производства полупроводниковой продукции с субмикронными размерами элементов основана на чрезвычайно широком круге сложных физико-химических процессов: получение тонких плёнок термическим и ионно-плазменным распылением в вакууме, механическая обработка пластин производится по 14-му классу чистоты с отклонением от плоскостности не более 1 мкм, широко применяется ультразвук и лазерное излучение, используются отжиг в кислороде и водороде, рабочие температуры при плавлении металлов достигают более 1500 °C, при этом диффузионные печи поддерживают температуру с точностью 0,5 °C, широко применяются опасные химические элементы и соединения (например, белый фосфор).

Всё это обусловливает особые требования к производственной гигиене, так называемую «электронную гигиену», ведь в рабочей зоне обработки полупроводниковых пластин или на операциях сборки кристалла не должно быть более пяти пылинок размером 0,5 мкм в 1 л воздуха. Поэтому в чистых комнатах на фабриках по производству подобных изделий все работники обязаны носить специальные комбинезоны.[1]. В рекламных материалах Intel спецодежда работников получила название bunny suit («костюм кролика») [2][3].

Техпроцессы более 100 нм

3 мкм

3 мкм — техпроцесс, соответствующий уровню технологии, достигнутому в 1979 году Intel. Соответствует линейному разрешению литографического оборудования, примерно равному 3 мкм.

1,5 мкм

1,5 мкм — техпроцесс, соответствующий уровню технологии, достигнутому Intel в 1982 году. Соответствует линейному разрешению литографического оборудования, примерно равному 1,5 мкм.

0,8 мкм

0,8 мкм — техпроцесс, соответствующий уровню технологии, достигнутому в конце 1980-х — начале 1990-х годов компаниями Intel и IBM.

0,6 мкм

Техпроцесс, достигнутый производственными мощностями компаниями Intel и IBM в 1994—1995 годах.

  • 80486DX4 CPU (1994 год)
  • IBM/Motorola PowerPC 601, первый чип архитектуры PowerPC
  • Intel Pentium на частотах 75, 90 и 100 МГц
  • МЦСТ-R100 (1998 г., 0,5 мкм, 50 МГц)

0,35 мкм

350 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1997 году ведущими компаниями-производителями микросхем, такими как Intel, IBM, и TSMC. Соответствует линейному разрешению литографического оборудования, примерно равному 0,35 мкм.

0,25 мкм

250 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1998 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 0,25 мкм.

слоев металла до 6. минимальное количество масок 22

0,18 мкм

180 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1999 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 0,180 мкм.

слоев металла до 6-7. минимальное количество масок 22-24

0,13 мкм

130 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 2000—2001 годах ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 130 нм.

  • Intel Pentium III Tualatin
  • Intel Celeron Tualatin-256 — октябрь 2001
  • Intel Pentium M Banias — март 2003
  • Intel Pentium 4 Northwood — январь 2002
  • Intel Celeron Northwood-128 — сентябрь 2002
  • Intel Xeon Prestonia и Gallatin — февраль 2002
  • AMD Athlon XP Thoroughbred, Thorton и Barton
  • AMD Athlon MP Thoroughbred — август 2002
  • AMD Athlon XP-M Thoroughbred, Barton и Dublin
  • AMD Duron Applebred — август 2003
  • AMD K7 Sempron Thoroughbred-B, Thorton и Barton — июль 2004
  • AMD K8 Sempron Paris — июль 2004
  • AMD Athlon 64 Clawhammer и Newcastle — сентябрь 2003
  • AMD Opteron Sledgehammer — июнь 2003
  • МЦСТ Эльбрус 2000 (1891BM4Я) — июль 2008
  • МЦСТ-R500S (1891ВМ3) — 2008, 500 МГц

Техпроцессы менее 100 нм

АктуальностьДанные в этой статье приведены по состоянию на 2011 год. Вы можете помочь, обновив информацию в статье.

90 нм (0,09 мкм)

90 нм — техпроцесс, соответствующий уровню полупроводниковой технологии, которая была достигнута к 2002—2003 годам. Соответствует линейному разрешению литографического оборудования, примерно равному 90 нм.

Технологический процесс с проектной нормой 90 нм часто используется с технологиями напряженного кремния, медных соединений с меньшим сопротивлением, чем у ранее применяемого алюминия, а также новый диэлектрический материал с низкой диэлектрической проницаемостью.

  • Intel Pentium 4 (Prescott)
  • МЦСТ-4R (готовится к выпуску, 4 ядра, 1 ГГц)
  • AMD Turion 64 X2 (мобильный)

65 нм (0,065 мкм)

65 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2004 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 65—70 нм.

  • STI Cell – PlayStation 3 – 2007-11-17
  • Microsoft Xbox 360 «Falcon» CPU – 2007–09
  • Microsoft Xbox 360 «Opus» CPU – 2008
  • Microsoft Xbox 360 «Jasper» CPU – 2008–10
  • Microsoft Xbox 360 «Jasper» GPU – 2008–10
  • Sun UltraSPARC T2 – 2007–10
  • TI OMAP 3 – 2008-02
  • VIA Nano – 2008-05
  • Loongson – 2009

50 нм (0,050 мкм)

50 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2005 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 50 нм.

45 нм (0,045 мкм)

45 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2006—2007 годах ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 45 нм. Для микроэлектронной промышленности стал революционным, так как это был первый техпроцесс, использующий технологию high-k/metal gate (HfSiON/TaN в технологии компании Intel), для замены физически себя исчерпавших SiO2/poly-Si

32 нм (0,032 мкм)

32 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2009—2010 годах ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 32 нм. Осенью 2009 компания Intel находилась на этапе перехода к этому новому техпроцессу[4][5][6][7][8]. С начала 2011 начали производится процессоры по данному техпроцессу.

  • Intel Sandy Bridge
  • AMD Bulldozer
  • AMD Piledriver (второе поколение Bulldozer, выход 23 октября 2012[9][10])
  • APU от AMD: Llano и Trinity (выход последнего намечен на октябрь 2012)

28 нм (0,028 мкм)

В третьем квартале 2010 года на новых мощностях расположенной на Тайване фабрики Fab 12 компании TSMC должен начаться серийный выпуск продукции по 28-нанометровой технологии[11].

В мае 2011 по технологии 28 нм фирмой Altera была выпущена самая большая в мире микросхема, состоящая из 3,9 млрд транзисторов.[12]

22 нм (0,022 мкм)

22 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2009-2012 гг. ведущими компаниями — производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 22 нм. 22-нм элементы формируются при литографии путем экспонирования маски светом длиной волны 193 нм[13]

В 2008 году, на ежегодной выставке высоких технологий International Electron Devices Meeting в Сан-Франциско технологический альянс компаний IBM, AMD и Toshiba продемонстрировал ячейку памяти SRAM, выполненую по 22-нм техпроцессу из транзисторов типа FinFET, которые, в свою очередь, выполняются по прогрессивной технологии high-k/metal gate (затворы транзистора изготавливаются не из кремния, а из гафния), площадью всего 0,128 мкм² (0,58×0,22 мкм)[14]. Также о разработке ячейки памяти типа SRAM площадью 0,1 мкм² созданную по техпроцессу 22 нм объявили IBM и AMD[15]
Первые работоспособные тестовые образцы регулярных структур (SRAM) представлены публике компанией Intel в 2009 году[16]. 22-нм тестовые микросхемы представляют собой память SRAM и логические модули. SRAM-ячейки размером 0,108 и 0,092 мкм² функционируют в составе массивов по 364 млн бит. Ячейка площадью 0,108 мкм² оптимизирована для работы в низковольтной среде, а ячейка площадью 0,092 мкм² является самой миниатюрной из известных сегодня ячеек SRAM.

Производятся процессоры по такой технологии в начале 2012 года.

  • Intel Ivy Bridge (анонсирован 23 апреля 2012 года).[17]
  • Intel Haswell (последователь Ivy Bridge, ожидаются в 2013 году).

14 нм (0,014 мкм)

Строительство завода под названием Fab42 в американском штате Аризона начнется в середине 2011 года, а в эксплуатацию он будет сдан в 2013 году. По заявлению Intel, он станет самым современным заводом по массовому выпуску компьютерных процессоров — Intel будет выпускать здесь продукцию по 14-нанометровой технологии на основе 300-миллиметровых кремниевых пластин. Завод также станет первым массовым производством, совместимым с 450-мм пластинами.[18][19] В стройку планируется вложить более $5 млрд. На момент запуска Fab 42 станет, как ожидается, одним из самых передовых в мире заводов по выпуску полупроводниковой продукции в больших объёмах.

10 нм (0,01 мкм)

Планы по выпуску серверных решений и развитию техпроцесса до 2018 года.[20]

Техпроцесс атомарного уровня

Учёные нашли способ создания рабочего транзистора, размер которого соответствует лишь одному атому. Исследователи из Университета Южного Уэльса в Австралии смогли создать и управлять технологией на основе атома фосфора, тщательно размещённого на полупроводниковом кристалле[21]. Результаты, как сообщается, приведут к созданию техпроцессов атомарного уровня примерно к 2020 году и могут лечь в основу будущих квантовых компьютеров.

См. также

Литература

  • Готра З. Ю. Справочник по технологии микроэлектронных устройств. — Львов: Каменяр, 1986. — 287 с.
  • Бер А. Ю., Минскер Ф. Е. Сборка полупроводниковых приборов и интегральных микросхем. — М: «Высшая школа», 1986. — 279 с.

Ссылки

Примечания

  1. В качестве средств индивидуальной защиты применяют спецодежду, изготовленную из металлизированной ткани (комбинезоны, халаты, передники, куртки с капюшонами и вмонтированными в них защитными очками)

    В. М. Городилин, В. В. Городилин §21. Излучения, их действия на окружающую среду и меры борьбы за экологию. // Регулировка радиоаппаратуры. — Издание четвёртое, исправленное и дополненное. — М.: Высшая школа, 1992. — С. 79. — ISBN 5-06-000881-9

  2. Миниатюрность и чистота
  3. Intel Museum – From Sand to Circuits
  4. Intel 32nm Logic Technology (англ.)
  5. процессоры Intel по 32-нм технологии
  6. New Details on Intel’s Upcoming 32nm Logic Technology (англ.)
  7. White Paper Introduction to Intel’s 32nm Process Technology (англ.)
  8. High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors
  9. Массовое производство чипов AMD FX на базе Piledriver начнётся в III квартале
  10. Премьера процессоров AMD
  11. TSMC преодолела сложности 40-нанометровой технологии и в этом году начнет выпуск по нормам 28 нм
  12. Корпорация Altera установила новый отраслевой рекорд — Программируемая вентильная матрица (FPGA) Stratix V
  13. Новости с прошедшего с 22 по 24 сентября в Сан-Франциско Форума Intel для разработчиков (Intel Developer Forum, IDF)
  14. IBM, AMD и Toshiba продемонстрировали первую 22-нм ячейку памяти SRAM
  15. IBM и AMD продемонстрируют 22 нм ячейку памяти
  16. Intel Developer Forum 22nm News Facts
  17. Порядок анонса процессоров Intel Ivy Bridge
  18. A First Look at Intel’s 14nm Fab 42 Manufacturing Facility // January 25, 2012 by Douglas Perry — source: VLSI Research; на русском: Intel Fab 42: первые фото строящегося производства по созданию 14 нм процессоров. Цитата: «first volume production facility that is compatible with 450 mm wafers»
  19. Update: Intel to build fab for 14-nm chips // Mark LaPedus 2/18/2011 «Fab 42, will be a 300-mm plant. It will also be compatible for 450-mm»
  20. Просочившийся слайд Intel указывает на 10-нм техпроцесс в 2018 году
  21. Создан транзистор на основе единственного атома

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *