Меню

Техпроцесс нм – о чем говорит технологический процесс процессора

Leave a comment

Содержание

5-нм на подходе — когда ждать новый техпроцесс / ИТ-ГРАД corporate blog / Habr

В начале октября тайваньский производитель чипов TSMC, который работает с такими компаниями, как AMD и Apple, сделал два заявления. Первое — компании удалось улучшить свой 7-нм техпроцесс и изготовить чип по новой технологии. Второе — 5-нанометровый чип выйдет в 2019 году. О перспективах этих разработок — рассказываем далее.


/ фото UCL CC

7-нм техпроцесс TSMC


Чип, напечатанный TSMC в начале месяца, выполнен по 7-нм техпроцессу второго поколения, который претерпел ряд изменений, по сравнению со своим предшественником.

В основе 7-нм техпроцесса первого поколения TSMC лежит DUV-литография с «глубоким» ультрафиолетовым излучением. При этом используется иммерсионная литография и сканеры с длиной волны 193 нм. Первый чип по этой технологии в компании напечатали еще в апреле этого года. А в мае TSMC начали производить 7-нм чипы для Apple. Новыми микросхемами снабдили систему на кристалле A12 Bionic. Она уже отвечает за работу последних смартфонов ИТ-гиганта: iPhone XR, XS и XS Max.

Всего же заказы поступают от двух десятков компаний, включая Bitmain, NVIDIA и Qualcomm. Крупным клиентом TSMC также является AMD — на основе 7-нм техпроцесса построены процессоры Vega 20 и серверный ЦП Epyc.

В начале этого месяца TSMC сообщили, что им удалось усовершенствовать свой 7-нм техпроцесс. Инженеры использовали для разработки чипов фотолитографию в «жестком» ультрафиолете (EUV). В этом случае длина волны оказывается в двадцать раз меньше и составляет 13,5 нм. Переход на EUV (совместно с развитием методов моделирования и обнаружения дефектов и других процессов) снизил энергопотребление производимых микросхем на 8% и увеличил плотность транзисторов на 20%, по сравнению с технологией первого поколения.

Пока с помощью EUV реализовывают только четыре некритичных слоя чипа. Сперва компания хочет освоить технологию, а потом уже использовать ее для изготовления больших объемов продукции (пока выход годных устройств довольно низок).

Кто стал первым клиентом, получившим новые чипы, компания-производитель не раскрывает, однако есть предположение, что им стала все та же Apple. Также компания разрабатывает специализированную версию обновленного техпроцесса для автоиндустрии.

Когда ждать 5-нм чип


В TSMC планируют начать рисковое производство 5-нм чипов уже в 2019 году. Для создания 5-нанометровых микросхем компания задействует EUV, но с помощью этого метода фотолитографии будут производиться четырнадцать слоев чипа, вместо четырех.

К тому времени тайваньская компания планирует обкатать технологию EUV и увеличить производственные мощности. Компания уже объявила о начале строительства новой фабрики, на которой будут создаваться чипы. Его возведут в Южном научном парке Тайваня.

У 5-нм чипов есть ряд преимуществ, по сравнению с 7-нм. При одинаковой сложности, плотность транзисторов в обновленных микросхемах будет в 1,8 раз выше, а тактовая частота увеличится на 15%. При этом 5-нм процессор будет потреблять на 20% меньше энергии, чем 7-нм. Однако перед запуском производства, компании нужно решить ряд трудностей.

Первая из них — нехватка инструментов для разработки. Необходимый пакет проектирования EDA для 5-нм техпроцесса подготовят в ноябре этого года. Однако библиотеки для блоков PCIe 4.0 и USB 3.1 окажутся готовы только летом будущего года.

Еще одна проблема — высокая стоимость разработки. По оценкам экспертов, разработка системы на кристалле по 7-нм технологии обходится где-то в 150 млн долларов. В случае с 5-нм техпроцессом стоимость увеличивается до 250 млн долларов. Это значит, что цена готовой продукции в итоге вырастет, и в использовании этих чипов будут заинтересовано меньше компаний-клиентов. Потому нет гарантий, что производство микросхем по 5-нм техпроцессу окупится.

Как дела у других компаний


В одном из прошлых постов мы говорили, что производитель интегральных микросхем GlobalFoundries остановил разработку своих 7-, 5- и 3-нм техпроцессов из-за финансовых трудностей. Вместо этого, организация переключилась на совершенствование 14-нм и создание встроенных запоминающих устройств.


/ фото Mr Seb CC / 22-нм кремниевая пластина Intel

Intel тоже проигрывают TSMC в скорости разработки новых техпроцессов. Компания опять перенесла релиз 10-нм микросхемы, а в сентябре и вовсе заявила, что возвращается к 22-нм (хотя и для реализации чипсетов), чтобы «разгрузить» производственные мощности. Однако здесь справедливо будет отметить, что 7-нм у TSMC и 10-нм у Intel считаются одинаковыми проектными нормами в контексте плотности и размеров транзисторов.

Единственным конкурентом TSMC на 7- и 5-нанометровом «поприще» пока видится Samsung. Запуск 7-нм чипов южнокорейский гигант запланировал на первую половину следующего года. Микросхемы по проектным нормам 5-нм Samsung начнут производить тоже в 2019, но когда стартуют их продажи, пока неизвестно.



P.S. О виртуальной инфраструктуре и работе с ПД — в нашем Telegram-канале:

habr.com

7 нм против 12: о чем говорит технологический процесс процессора

Каждый микропроцессор представляет собой специальную интегральную схему, которая расположена на микроскопическом кристалле кремния. Этот материал используется только из-за того, что обладает свойствами полупроводников: он проводит электроэнергию быстрее диэлектриков и медленнее металлов. Его можно сделать и изолятором, который останавливает движение зарядов, и проводником, который зажигает для них зелёный свет. Этим параметром получится управлять с помощью специальных примесей.В сентябре 2019 года Apple представила три свежих смартфона: iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max. Их главной фишкой, конечно же, оказались камеры, общие принципы работы которых мы обсуждали в отдельном материале. Тем не менее, отдельного внимания также заслужил и процессор новинок. Их «сердцем» стал Apple A13 Bionic, который создан по 7-нанометровому технологическому процессу. Производитель гордится этой цифрой, ведь до неё добрались далеко не все конкуренты. А вот у Xiaomi Redmi 8 Pro чип MediaTek Helio G90T. У него все 12 нм, и кичиться здесь точно нечем…

Вообще, в мире высоких технологий нет ничего быстрее, чем самые проворные микросхемы — процессоры. Они умеют обрабатывать миллиарды операций в секунду, а на их производство уходит настолько много невероятных технологий, что даже становится жутко. Микропроцессоры пошли в массовое производство в 90-х годах прошлого столетия. С того времени они пережили несколько ступеней развития, апогеем которого стало начало 21 века. Именно тогда производителям открылись все основные свойства кремния, и это дало возможность получать максимальную эффективность при минимальных затратах.

Сегодня темпы развития процессоров стремительно падают. Кремниевые технологии быстро приближаются к пределу своих физических возможностей. Да, их частоты всё ещё увеличиваются, но эффективность работы находится в стагнации. Про это в разрезе смартфонов и не только мы расскажем в данной статье.

Что собой в принципе представляет каждый микропроцессор

Внутри микропроцессора нашлось место для миллионов транзисторов, которые объединены невероятно тонкими проводниками. Для их производства используют алюминий, медь и другие материалы — они предназначены для того, чтобы переваривать информацию. Из них складываются внутренние шины, которые дают процессору возможность работать с математическими и логическими операциями, а также управлять остальными микросхемами устройства в общем и целом.

Одним из самых важных параметров качества микропроцессора всегда была частота работы его кристалла. Именно она определяет число действий, которые могут выполняться за отведённое время — это зависит от того, насколько быстро транзисторы могут переходить из закрытого состояния в открытое. На это далеко не в последнюю очередь влияет технология производства кремниевых пластин — основного компонента процессоров. Чем они меньше, тем разогнать их частоту обычно можно до больших значений.

Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.

1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.

2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.

3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.

4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.

5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.

6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.

7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.

8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.

9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.

10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.

11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.

12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.

13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.

14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.Технологический процесс, который используется при производстве микропроцессоров, влияет на их размер. Если обрезать количество нанометров, о котором сегодня все говорят, можно уменьшить габариты самого чипа. Это сделает его не только более быстрым — он будет выделять меньше тепла и расходовать меньше энергии. Данные показатели всегда были очень важны в полноценных компьютерах, но теперь выходят чуть ли не на первое место и в современных смартфонах.
Какие этапы проходят процессоры во время производства

Выше скорость работы.

В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.Хронология уменьшения размера технологического процесса
’70-е:
3 мкм — такого технологического процесса компания Zilog достигла в 1975 году, Intel — в 1979-м.
’80-е:
1,5 мкм — Intel уменьшила технологический процесс до этого уровня в 1982 году;
0,8 мкм — уровень Intel в конце 1980-х.
’90-е:
0,6–0,5 мкм — компании Intel и IBM находились на этом уровне в 1994–1995 годах;
350 нм — Intel, IBM, TSMC к 1997-му;
250 нм — Intel, 1998 год;
180 нм — Intel и AMD, 1999 год.
’00-е:
130 нм — этого уровня компании Intel, AMD достигли в 2001–2002 годах;
90 нм — Intel в 2002–2003 годах;
65 нм — Intel в 2004–2006 годах;
45–40 нм — Intel в 2006–2007 годах;
32–28 нм — Intel в 2009–2010 годах;
22–20 нм — Intel в 2009–2012 годах;
’10-е:
14–16 нм — Intel наладила производство таких процессоров к 2015 году;
10 нм — TSMC делала такие процессоры уже в 2016-м, а Samsung — в 2017 году;
7 нм — TSMC, 2018 год;
6 нм — TSMC только анонсировала такой технологический процесс в 2019 году;
5 нм — TSMC начала тестирование такого техпроцесса в 2019 году;
3 нм — Samsung обещает делать процессоры с таким технологическим процессом к 2021 году.
Чем меньше нанометров в технологическом процессе, тем:

Ниже выделение тепла. Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка. При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.

Меньше потребление энергии. В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах. Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.

В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2016 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.

www.playground.ru

Intel продолжит использовать 14-нм техпроцесс для настольных процессоров ещё несколько лет

  • Нынешний 14-нм техпроцесс останется в строю как минимум до 2021 года
  • В презентациях Intel о переходе на новые технологии упоминаются какие угодно процессоры и продукты, но не настольные
  • Массовое производство продуктов Intel по 7-нм технологии будет развёрнуто не ранее 2022 года
  • Все инженерные ресурсы будут переброшены с 14-нм техпроцесса на 7-нм, а 10-нм техпроцессом будут заниматься другие специалисты

Утечки из «дорожной карты» Dell позволили получить некоторое представление о планах Intel по выпуску новых процессоров, и в настольном сегменте 14-нм продукты должны фигурировать ещё очень долго, если опираться на этот источник информации. Однако мероприятие Intel для инвесторов на этой неделе могло пролить свет истины на ситуацию с выпуском 10-нм и 7-нм продуктов, и всё было бы хорошо, если бы не удручающее молчание представителей компании по поводу сроков выхода именно новых настольных процессоров.

Первоначальный план Intel по освоению 10-нм технологии пришлось корректировать

Не секрет, что шесть лет назад корпорация Intel была уверена в своей способности освоить серийный выпуск 10-нм процессоров в 2016 году. Как уже не раз поясняли руководители Intel, успевшие за это время смениться, были выбраны слишком агрессивные целевые показатели по геометрическому масштабированию транзисторов при планировании перехода на 10-нм техпроцесс, и освоить выпуск 10-нм продуктов в указанные сроки не удалось.

В прошлом году начались поставки 10-нм мобильных процессоров Cannon Lake, но они подходили только для применения в сверхтонких мобильных устройствах, имели не более двух ядер, а расположенную на кристалле графическую подсистему вообще пришлось отключить. Собственно, и объёмы поставок Cannon Lake не были значимыми, поэтому в качестве начала периода освоения 10-нм техпроцесса Intel теперь указывает 2019 год. Мобильные 10-нм процессоры Ice Lake будут представлены в июне этого года, тогда же начнутся их поставки производителям ноутбуков, а те уже выкатят готовые компьютеры на их основе во втором полугодии.

Только по официальной версии 14-нм техпроцесс Intel в своём эволюционном развитии сменил три поколения, а более мелких улучшений было ещё больше. Intel с гордостью заявляет, что удельная производительность в пересчёте на ватт потребляемой электроэнергии улучшилась при переходе от первого поколения 14-нм техпроцесса к третьему на 20 %.

Более того, если взглянуть на свежие презентации Intel с майского мероприятия для инвесторов, то можно обнаружить, что жизненный цикл 14-нм техпроцесса продлён до 2021 года включительно. К тому моменту уже начнётся серийный выпуск первых 7-нм продуктов, а 14-нм техпроцесс будет по-прежнему актуален для определённого ассортимента продуктов Intel.

Никаких упоминаний о переводе настольных процессоров на 7-нм технологию не прозвучало

Даже утечка о планах Intel из презентации Dell информации о сроках выхода 10-нм процессоров для настольного применения не содержала. В этом контексте фигурировали преимущественно мобильные процессоры со сверхнизким энергопотреблением, чьё количество ядер не превышало четырёх штук. Даже в этом случае широкое распространение они получат не ранее 2021 года. К тому времени уже выйдут 10-нм процессоры Tiger Lake, которые предложат поддержку PCI Express 4.0 и будут производиться уже по второму поколению 10-нм технологии. Процессорам Tiger Lake достанется и новая графика с 96 исполнительными ядрами, использующая общую архитектуру с дискретными продуктами, анонсируемыми в 2020 году.

До конца 2019 года успеют выйти и 10-нм процессоры Lakefield со сложной пространственной компоновкой Foveros, подразумевающей интеграцию в одной упаковке и системной логики, и оперативной памяти. Даже «предположительно настольный» первый дискретный графический процессор Intel за последние двадцать лет будет выпущен в 2020 году по 10-нм технологии, а вот настольные процессоры в контексте перехода на 10-нм технологию при этом никак на мероприятии для инвесторов не упоминались.

В серверном сегменте тоже достаточно определённости. Прежде чем в первой половине следующего года выйдут 10-нм процессоры Ice Lake-SP, будут выпущены 14-нм процессоры Cooper Lake, совместимые с ними конструктивно. По какой технологии будут выпускаться преемники Ice Lake-SP в лице Sapphire Rapids, представители Intel не уточняют, но Навин Шеной (Navin Shenoy) во время сессии вопросов и ответов с аналитиками признался, что вторым выпускаемым по 7-нм технологии продуктом после GPU для ускорителей вычислений будет центральный процессор для серверов. Если учесть, что 7-нм первенец выйдет в 2021 году, то для дебюта центрального 7-нм процессора серверного класса в равной степени подходит как 2021 год, так и более поздние периоды. Sapphire Rapids должен дебютировать в 2021 году, его преемник появится в 2022 году.

Таким образом, при описании своих текущих планов миграции на 7-нм техпроцесс Intel чётко упоминает графические и центральные процессоры для серверного применения, но оставляет за кадром настольные и мобильные.

Штурм 7-нм технологии: призрачная надежда для настольных продуктов

Исполнительный директор Intel Роберт Свон (Robert Swan) сделал несколько важных заявлений, касающихся освоения 7-нм техпроцесса. Во-первых, он заявил, что после 2021 года этот техпроцесс позволит компании снизить уровень операционных затрат. Эта уверенность основана на том, что сейчас компании приходится развивать три технологических процесса параллельно: 14 нм, 10 нм и 7 нм. Попытки наверстать упущенное с 10-нм техпроцессом увеличивают уровень затрат, а когда с 7-нм технологией будет всё налажено, компания надеется вернуть контроль над расходами в соответствии с профильным планом на несколько лет.

Во-вторых, Свон заявил, что на освоение 7-нм технологии будут брошены все инженерные кадры, которые были задействованы при создании 14-нм продуктов Intel. Среди последних мы знаем немало настольных процессоров с большим количеством ядер и высоким уровнем производительности. Значит ли это, что данная команда специалистов преуспеет в создании настольных 7-нм процессоров? Ответ на этот вопрос наверняка придётся искать за пределами текущего десятилетия.

В-третьих, глава Intel пояснил, что массовое производство продуктов Intel по 7-нм технологии будет развёрнуто лишь в 2022 году, уже после появления первого дискретного графического процессора, выпущенного годом ранее по 7-нм технологии с использованием сверхжёсткой ультрафиолетовой литографии. Будут ли это настольные или мобильные процессоры, сейчас тоже с уверенностью сказать сложно, ибо даже в последовательности перевода продуктов на новые техпроцессы у Intel изменились приоритеты.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Что означают термины 7nm и 10nm для процессоров и почему они имеют значение

Что означают термины «7nm» и «10nm» для процессоров и почему они имеют значение

Постараюсь объяснить просто. Процессоры производятся с использованием миллиардов крошечных транзисторов, электрических затворов, которые включаются и выключаются для выполнения расчетов. Для этого им требуется энергия, и чем меньше транзистор, тем меньше требуется мощность. «7nm» и «10nm» — это размеры этих транзисторов, а «nm» — нанометры. Именно они являются полезными для оценки производительности конкретного процессора.

Для справки, «10nm» — это новый технологический процесс Intel, который должен дебютировать в 4 квартале 2019 года, а «7nm» обычно относится к процессу TSMC, на котором основаны новые процессоры AMD и чип A12X Apple.

Так почему же эти новые процессы так важны?

Закон Мура, старое наблюдение о том, что количество транзисторов на чипе удваивается каждый год, а затраты вдвое сокращаются, удерживался в течение длительного времени. Еще в конце 90-х и начале 2000-х годов транзисторы сокращались вдвое каждые два года, что приводило к их значительному улучшению. Но дальнейшее уменьшение стало более сложным, и, например, мы не наблюдали уменьшения транзистора от Intel с 2014 года. Так что эти новые технологические процессы являются первыми крупными сокращениями за долгое время, особенно со стороны Intel, и представляют собой краткое возрождение закона Мура.

С появлением новых процессоров AMD на 7-нм процессорах TSMC и чипов A12X Apple, у них появляется шанс обойти Intel по производительности и создать здоровую конкуренцию монополии этой компании на рынке. По крайней мере до тех пор, пока 10-нм чипы Intel «Sunny Cove» не начнут поступать в продажу.

Что «nm» на самом деле означает

Процессоры выполнены с помощью фотолитографии, где образ процессора вытравливается на куске кремния. Точная методика выполнения этой операции обычно называется технологическим процессом и измеряется тем, насколько малым может быть изготовление транзисторов.

Поскольку более компактные транзисторы более энергоэффективны, они могут выполнять больше вычислений без перегрева, что обычно является ограничивающим фактором для производительности процессора. Это также позволяет уменьшить размеры матрицы, что снижает затраты и может увеличить плотность при тех же размерах, а это означает увеличение количества ядер на чип.

Плотность 7 нм в два раза выше, чем у предыдущего 14 нм узла, что позволяет таким компаниям, как AMD, выпускать 64-ядерные серверные чипы, что значительно превосходит их предыдущие 32 ядра (и 28 ядра Intel).

Важно отметить, что, хотя Intel все еще находится на 14-нм процессоре, а AMD собирается запустить свои 7-нм процессоры очень скоро, это не означает, что AMD будут работать в два раза быстрее. Производительность не соответствует размеру транзистора, и в таких маленьких масштабах эти значения уже не столь точны.

Мобильные чипы претерпят наибольшие улучшения

Уменьшение транзисторов — это не только производительность; оно также имеет огромное значение для маломощных чипов мобильных устройств и ноутбуков. С 7 нм (по сравнению с 14 нм) вы можете получить на 25% больше производительности при той же мощности, или вы можете получить ту же производительность за половину мощности.

Это означает более длительное время работы от батареи при одинаковой производительности и гораздо более мощные чипы для небольших устройств. Мы уже видели, как чип A12X от Apple выигрывал некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлажден и упакован внутри смартфона, И это только первый 7-нм чип, который появился на рынке.

Уменьшение узлов всегда является хорошей новостью, так как более быстрые и энергоэффективные чипы влияют практически на все аспекты технологического мира. 2019 год будет очень интересным для технических специалистов и, конечно, очень приятно видеть, что закон Мура еще не совсем мертв.


Спасибо, что читаете! Подписывайтесь на мой канал в Telegram и Яндекс.Дзен. Только там последние обновления блога и новости мира информационных технологий. Также, читайте меня в социальных сетях: Facebook, Twitter, VKOK.

Респект за пост! Спасибо за работу!

Хотите больше постов? Узнавать новости технологий? Читать обзоры на гаджеты? Для всего этого, а также для продвижения сайта, покупки нового дизайна и оплаты хостинга, мне необходима помощь от вас, преданные и благодарные читатели. Подробнее о донатах читайте на специальной странице.

На данный момент есть возможность стать патроном, чтобы ежемесячно поддерживать блог донатом, или воспользоваться Яндекс.Деньгами, WebMoney, QIWI и PayPal:

Спасибо! Все собранные средства будут пущены на развитие сайта. Поддержка проекта является подарком владельцу сайта.

levashove.ru

Техпроцесс 5нм от TSMC - куда уж меньше? - Stevsky.ru

tsmcПроизводитель чипов TSMC 

Компания TSMC (Taiwan Semiconductor Manufacturing Company) - одна из немногих промышленных компаний на нашей планете, занимающихся реальным фабричным производством мобильных процессоров. У неё десятки фабрик, в основном на Тайване, и многомиллиардные обороты, растущие ежегодно. Конечно, TSMC ещё далеко до гигантов рынка в виде Intel, но направление выбрано верно и как знать, может лет через 10 они сравняются. Хотя есть во всей этой истории один спорный момент, который и хотелось бы обсудить в данной статье.

Техпроцесс 5нм в 2020 году

 

Окунувшись в историю, можно вспомнить, что более тонкий техпроцесс всегда давался микроэлектронному производству с большим трудом. На каждый шаг по уменьшению размеров транзисторов тратились колоссальные суммы денег и годы разработки:

  • 90 нм - 2002 год
  • 65 нм - 2004 год
  • 45 нм - 2006 год
  • 28 нм - 2010 год
  • 20 нм - 2012 год
  • 14 нм - 2014 год
  • 10 нм - 2017 год
  • 7 нм - 2018 год
  • 6 нм - 2019 год
  • 5 нм - 2020 год

Причём ранее ведущим новатором в мире была компания Intel, а теперь, с приоритетом мобильных вычислений, первенство ушло TSMC. Intel только-только начала переходить на 10нм техпроцесс, причём не очень удачно, а TSMC уже готовится к промышленному производству 5нм и проектирует фабрики под 3нм!

7nm

Что интересно, 10 нм - это не размер всего транзистора, это лишь показатель ширины затвора. Полностью транзистор, выполненный по проектным нормам 10 нм, имеет размер около 64нм и если посчитать площадь одного транзистора (чуть больше 4000 квадратных нанометров) и отнести её к площади чипа (например, Apple A10 - 89.25 мм2), то получится, что на площади этого чипа можно разместить почти 22 миллиарда транзисторов. Однако, нам известно, что в состав Apple A11 входит 4,3 миллиарда транзисторов. Остальная площадь чипа отводится под соединения и другие подсистемы чипа. Итого полезная площадь - это едва ли 20% от общей площади чипа.

Apple A12, получивший новый 7нм техпроцесс, имеет площадь 83,27 мм2, но при этом содержит уже 6,9 млрд. транзисторов. Если также посчитать полезную площадь, то получим значение 17%.

Это говорит о том, что площадь, которую занимают реальные вычислительные элементы, со временем сокращается, освобождая место под всевозможные соединения и переходы. Однако это не снижает производительность, так как сокращение размеров транзисторов столь сильное, что их количество всё равно возрастает на десятки процентов. Например, разница между эппловскими чипами А10 и А11 - 30%, а между новыми поколениями A11 и A12 - уже более 60%.

tp apple

Дальнейшее уменьшение проектных норм, несомненно, приведёт к ещё большему числу транзисторов на прежней площади чипа. Можно примерно посчитать их количество и ожидаемый прирост производительности:

Техпроцесс 5нм для новых айфонов

Новый iPhone XI, ожидаемый в сентябре 2019 года, получит процессор Apple A13 на техпроцессе 7нм. Но не на таком же, как Apple A12 в 2018 году, а на усовершенствованном, второго поколения, с частичным применением ультрафиолетовой литографии EUV, которую фабрики начали внедрять уже в марте 2019.

Зато в Apple A14 для айфонов 2020 года уже будет новый техпроцесс 5нм, полностью отлитый по технологии EUV (Extreme ultraviolet lithography, экстремальная ультрафиолетовая литография).

Если размер чипа останется прежним и его площадь будет равна примерно 80 мм2 (8мм х 10мм), а полезная площадь составит хотя бы 15%, то можно ожидать более 11 миллиардов транзисторов в процессоре Apple A14 на 5нм техпроцессе. Это 70% прироста вычислительной мощности. И если мы видели 300тыс. баллов в антуту для Apple A12, то Apple A14 вполне сможет показать и 600тыс. баллов. 

Возникает логичный вопрос: а нафига такая мощность нужна? Зачем смартфону вычислительные возможности настольного ПК? Всё равно же они будут простаивать!

mosch

 

Куда девать огромные вычислительные способности?

У меня есть пять весомых аргументов, чтобы ответить на этот вопрос. Каждого из них достаточно, чтобы сказать "мм, ну тогда ясно", а вкупе они составляют нерушимое доказательство необходимости такого наращивания вычислительной мощи

1. Распознавание речи на лету.

Более производительная система позволит выделить задачу по распознаванию речи и звуков в отдельный, постоянно запущенный процесс, который не будет полностью нагружать систему, а будет выполняться в фоновом режиме. Постоянное распознавание речи нужно как для голосового помощника, к которому вы будете обращаться всё чаще, так и для прогнозирования ваших действий. Представьте себе, что вы только сказали, что классная картинка, надо бы сфоткать, а смартфон уже запускает камеру и готовит подходящий режим для съёмки! Сам! Автоматически! На основании ваших слов и показателей других датчиков.

rech

2. Интеллектуальное фото и видео.

Продолжая разговор о фото, хотел бы напомнить, что сейчас многие смартфоны выполняют очень хитрую связку действий для получения одной-единственной фотографии: они делают несколько снимков сразу, а потом определённым образом накладывают их друг на друга, чтобы получить идеальную экспозицию и глубину резкости. И это не только режим портретного боке, это уже и ночные снимки, и некоторые другие режимы. Камерам не хватает производительности, чтобы выполнять подобную схему постоянно, при этом доверить интеллектуальной системе смартфона самостоятельно подбирать режим на основании данных об объекте в кадре, освещённости, скорости движения и т.д. Всё это должно выполняться за доли секунды перед тем, как вы нажмёте спуск.

С видео ещё веселее: камерам остро не хватает производительности для улучшения работы следящего автофокуса и цифрового стабилизатора. Имея запас производительности, смартфоны выведут мобильную видеосъёмку на качественно новый уровень, почти дотягиваясь до профессиональной кинооператорской работы. При этом все модные нынче ускорения и замедления кадров, эффекты и фильтры, будут подбираться автоматически или в пару тапов по экрану.

3. Умное позиционирование и геозависимые действия.

Грядёт новая эпоха геопозиционирования, когда благодаря внедрению сетей 5G смартфон научится определять своё местоположение с точностью до сантиметров. Ориентируясь на сигналы десятков устройств вокруг него, имеющих чёткую привязку к своему месту, сравнивая с данными спутника и сигналами сотовых вышек, ваш смартфон будет абсолютно точно знать своё положение в мире. Благодаря этим данным он сможет выполнять те или иные действия, заложенные вами или прогнозируемые умными сервисами. При проходе мимо магазина он будет извещать вас о проходящих в нём акциях. При спуске в метро - автоматически запускать систему бесконтактной оплаты. При заходе в кинотеатр - включать бесшумный режим и т.д. Сотни, а может и тысячи мелких действий, завязанных на позиционирование, будут выполняться в фоне или на ваших глазах, и довольно быстро станут привычными и сами собой разумеющимися. Вы даже не будете знать, что на них тратится процессорное время и мощь производительной начинки вашего устройства.

4. Предзагрузка всего

Вы только собрались почитать ленту новостей - а смартфон уже запустил нужное приложение и предзагрузил ленту на километр вперёд. Вы подумали, что неплохо бы послушать музыку, а смартфон уже включил вам плеер и подсовывает именно те композиции, что вам сейчас хотелось бы услышать. Вы хотите загуглить "яблочный пирог", а смартфон уже об этом знает и готов показать заранее предзагруженную страничку. Магия? Может быть. Но скорее - работа тысяч программистов и неустанный труд множества нейросетей, занимающихся прогнозированием ваших потребностей. Вы, возможно, уже замечали, какие точные варианты вам подсовывает яндекс в поисковой строке? Так вот то же самое скоро придёт и на телефоны. Они будут "чувствовать" ваши желания и выполнять их до того, как вы им о них скажете. 

predzagruzka

5. Повышенная автономность

Более тонкий техпроцесс уже сам по себе ведёт к повышению автономности: транзисторы уменьшаются в размерах, их энергопотребление падает, смартфон живёт дольше. Однако, умные системы расхода батареи будут координировать нагрузку на устройство таким образом, что в те моменты, когда смартфон вам не нужен, он будет практически отключаться, оставляя только самое необходимое - уведомления и связь. А когда вам потребуется вся его мощь - включит все ядра, что потребуются. Здесь можно коснуться и работы планировщика, который распределяет задачи между ядрами чипа, и поднять вопрос троттлинга, когда от нагрева процессор начинает замедляться. Я почти уверен, что троттлинг уйдёт в прошлое, так как запаса производительности будет хватать всегда и на всё, а если и нет, то ядра будут отключаться по очереди, не влияя на общий результат.

Я вообще молчу про игры. Понятное дело, что более производительные чипы в первую очередь нужны для запуска более требовательных игр на смартфоне.  

Техпроцесс 5нм видео

 


< Предыдущая   Следующая >

Новые материалы по этой тематике:

Старые материалы по этой тематике:


www.stevsky.ru

7-нм техпроцесс помог, но AMD снова проигрывает Intel по площади ядра

Увеличение плотности размещения транзисторов было одним из основополагающих условий развития микроэлектроники на протяжении нескольких десятилетий. Оно даже легло в основу эмпирического правила, сформулированного сооснователем Intel Гордоном Муром (Gordon Moore), которое впоследствии окрестили «законом Мура». Долгое время для корпорации Intel следование этому правилу было делом чести, и производитель процессоров старался, чтобы каждые полтора–два года плотность размещения транзисторов на единице площади кристалла удваивалась. До недавнего времени удавалось добиваться этого за счёт перехода на более «тонкие» литографические нормы, но на 10-нм техпроцессе Intel неожиданно споткнулась, изначально поставив слишком амбициозные цели в техническом задании.

Компании AMD, которая уже десять лет прекрасно себя чувствует без собственных производственных мощностей, удалось вовремя скооперироваться с TSMC при освоении 7-нм технологии, поскольку и главный конкурент по этому показателю от неё отставал, и один из главных партнёров в лице GlobalFoundries в итоге подвёл, отказавшись от освоения 7-нм технологии. Так или иначе, выпуск 7-нм продуктов AMD начался ещё в прошлом году, когда появились ускорители вычислений Radeon Instinct на базе 7-нм версии Vega, а на этой неделе компания подтвердила намерения вывести на рынок в третьем квартале 7-нм настольные процессоры Ryzen 3000, 7-нм серверные процессоры EPYC и 7-нм игровые продукты в семействе видеокарт Radeon RX 5700.

Мал золотник, да дёшев?

Первая фаза дебюта 7-нм процессоров Matisse на открытии Computex 2019 позволила оценить ещё один важный параметр — приблизительную площадь кристалла с вычислительными ядрами, которые теперь расположились на отдельном 7-нм «чиплете». Каждый такой кристалл содержит по восемь вычислительных ядер с 512 Кбайт кеша второго уровня на ядро и 32 Мбайт кеша третьего уровня, который доступен всем восьми ядрам. Контроллер памяти переехал на отдельный 14-нм «чиплет», поэтому удвоение объёма кеша третьего уровня по сравнению с 12-нм процессорами с архитектурой Zen+ призвано компенсировать увеличение задержек из-за таких изменений в компоновке.

Источник изображения: AMD

Источник изображения: AMD

Строго говоря, 7-нм «чиплеты» AMD демонстрировала несколько месяцев назад в составе серверных процессоров Rome. Именно тогда некоторым энтузиастам по фотографиям с высоким разрешением удалось определить, что площадь одного кристалла Zen 2 с восемью вычислительными ядрами не превышает 70–78 мм2. Столь компактные размеры кристалла должны позволить AMD добиться не только высокого уровня выхода годной продукции, но и снизить себестоимость изготовления единицы продукции.

Intel и 10-нм техпроцесс: второй блин не комом?

Фотографии процессоров Intel Ice Lake-U и Ice Lake-Y, которые выпускаются компанией самостоятельно по второму поколению 10-нм технологии, появились после их демонстрации на Computex 2019. Кроме того, в официальном комплекте фотографий, который компания распространила ещё до выступления Грегори Брайанта (Gregory Bryant), присутствовали изображения кремниевой пластины с 10-нм кристаллами Ice Lake. Это позволило некоторым специалистам по «камеральным исследованиям» приблизительно вычислить площадь кристалла Ice Lake.

Источник изображения: Legit Reviews

Источник изображения: Legit Reviews

Следует определиться, что мобильные процессоры Ice Lake-U (на фото справа) и Ice Lake-Y (на фото слева) имеют двухкристальную компоновку — рядом с 10-нм кристаллом, который содержит четыре вычислительных ядра, кеш третьего уровня, контроллеры памяти, дисплея и Thunderbolt 3, а также встроенную графику Gen 11, расположился 14-нм кристалл с логикой ввода-вывода, который можно условно назвать «чипсетом». Вычислительные ядра содержатся в более крупном 10-нм кристалле, чья форма ближе к квадратной.

Лучше один раз увидеть, чем семь раз отмерить

Исследователи фотографий определили по изображениям кремниевых пластин, что приблизительная площадь 10-нм кристалла Ice Lake составляет 130 мм2. Из них на четырёхъядерный комплекс приходятся 31,34 мм2. По сравнению с 14-нм процессорами Coffee Lake вычислительные ядра Ice Lake меньше примерно на 34 %.

Источник изображения: Intel

Источник изображения: Intel

У Intel на одном 10-нм кристалле, таким образом, расположились по четыре ядра и 8 Мбайт кеша третьего уровня. У AMD на одном 7-нм кристалле разместились восемь ядер и 32 Мбайт кеша третьего уровня. Если привести площади кристаллов обоих производителей к удобной для сравнения четырёхъядерной компоновке, то у AMD выйдет около 35–39 мм2, а Intel предложит вдвое меньший объём кеша третьего уровня при площади 31,34 мм2. Другими словами, даже 10-нм технология позволяет Intel сделать свои ядра более компактными, хотя чисто по площади кристаллов выигрыш оказывается на стороне AMD: 70–78 мм2 против 130 мм2. Правда, следует учитывать, что у Intel на этом кристалле ещё присутствует и графическая подсистема, которая занимает около 40,6 мм2, но если бы у Intel было восемь вычислительных ядер на кристалле, то он всё равно оказался бы чуть крупнее «чиплета» AMD — около 89 мм2.

Источник изображения: Intel

Источник изображения: Intel

В настольном сегменте Intel ещё долго будет использовать 14-нм техпроцесс, и об этом тоже нужно помнить при попытках оценить преимущество по площади кристаллов. Настольные процессоры Intel продолжают использовать монолитный кристалл, хотя в ближайшие годы всё может измениться. В этом отношении пока преимущество на стороне AMD, но и специфики экономических отношений этой компании с TSMC мы тоже не знаем. На себестоимость 7-нм процессоров AMD сейчас может влиять и уровень выхода годной продукции, и необходимость возмещать средства, потраченные на его освоение, а каждая новая ступень литографии в этом смысле выходит дороже предшественницы. Конечно, TSMC и другие контрактные производители стараются увеличивать сроки окупаемости новых техпроцессов, но зрелый 14-нм техпроцесс Intel себя наверняка давно уже окупил.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Технологический процесс в электронной промышленности | Intel вики

Файл:Monokristalines Silizium für die Waferherstellung.jpg Файл:Apple VTI Bagpipe.jpg

Технологический процесс полупроводникового производства — технологический процесс изготовления полупроводниковых (п/п) изделий и материалов, и состоит из последовательности технологических (обработка, сборка) и контрольных операций, часть производственного процесса производства п/п изделий (транзисторов, диодов и т. п.).

При производстве п/п интегральных микросхем применяется фотолитография и литографическое оборудование. Разрешающая способность (в мкм и нм) этого оборудования (т. н. проектные нормы) и определяет название применяемого конкретного технологического процесса.

Совершенствование технологии и пропорциональное уменьшение размеров п/п структур способствуют улучшению характеристик (размеры, энергопотребление, рабочие частоты, стоимость) полупроводниковых приборов (микросхем, процессоров, микроконтроллеров и т.д.). Особую значимость это имеет для процессорных ядер, в аспектах потребления электроэнергии и повышения производительности, поэтому ниже указаны процессоры (ядра) массового производства на данном техпроцессе.

    Этапы технологического процесса при производстве микросхем Править

    Файл:ICC 2008 Poland Silicon Wafer 1 edit.png

    Шаблон:Details Технологический процесс производства полупроводниковых приборов и интегральных микросхем (микропроцессоров, модулей памяти и др.) включает нижеследующие операции.

    • Механическую обработку полупроводниковых пластин — получают пластины полупроводника со строго заданной геометрией, нужной кристаллографической ориентацией (не хуже ±5 %) и классом чистоты поверхности. Эти пластины в дальнейшем служат заготовками в производстве приборов или подложками для нанесения эпитаксиального слоя.
    • Химическую обработку (предшествующую всем термическим операциям) — удаление механически нарушенного слоя полупроводника и очистка поверхности пластины. Основные методы химической обработки: жидкостное и газовое травление, плазмохимические методы. Для получения на пластине рельефа (профилирование поверхности) в виде чередующихся выступов и впадин определённой геометрии, для вытравливания окон в маскирующих покрытиях, для проявления скрытого изображения в слое экспонированного фоторезиста, для удаления его заполимеризированных остатков, для получения контактных площадок и разводки в слое металлизации применяют химическую (электрохимическую) обработку.
    • Эпитаксиальное наращивание слоя полупроводника — осаждение атомов полупроводника на подложку, в результате чего на ней образуется слой, кристаллическая структура которого подобна структуре подложки. При этом подложка часто выполняет лишь функции механического носителя.
    • Получение маскирующего покрытия — для защиты слоя полупроводника от проникновения примесей на последующих операциях легирования. Чаще всего проводится путём окисления эпитаксиального слоя кремния в среде кислорода при высокой температуре.
    • Фотолитография — производится для образования рельефа в диэлектрической плёнке.
    • Введение электрически активных примесей в пластину для образования отдельных p- и n-областей — нужно для создания электрических переходов, изолирующих участков. Производится методом диффузии из твёрдых, жидких или газообразных источников, основными диффузантами в кремний являются фосфор и бор.
    Термическая диффузия — направленное перемещение частиц вещества в сторону убывания их концентрации: определяется градиентом концентрации. Часто применяется для получения введения легирующих примесей в полупроводниковые пластины (или выращенные на них эпитаксиальные слои) для получения противоположного, по сравнению с исходным материалом, типа проводимости, либо элементов с более низким электрическим сопротивлением.
    Ионное легирование (применяемое при изготовлении полупроводниковых приборов с большой плотностью переходов, солнечных батарей и СВЧ-структур) определяется начальной кинетической энергией ионов в полупроводнике и выполняется в два этапа:
    1. в полупроводниковую пластину на вакуумной установке внедряют ионы
    2. производится отжиг при высокой температуре
    В результате восстанавливается нарушенная структура полупроводника и ионы примеси занимают узлы кристаллической решётки.
    • Получение омических контактов и создание пассивных элементов на пластине — с помощью фотолитографической обработки в слое оксида, покрывающем области сформированных структур, над предварительно созданными сильно легированными областями nШаблон:Sup- или pШаблон:Sup-типа, которые обеспечивают низкое переходное сопротивление контакта, вскрывают окна. Затем, методом вакуумного напыления всю поверхность пластины покрывают слоем металла (металлизируют), излишек мет

    intel.fandom.com

Отправить ответ

avatar
  Подписаться  
Уведомление о