Меню

Типы сенсорных экранов телефонов – Типы сенсорных экранов — Ferra.ru

Содержание

Типы сенсорных экранов — Ferra.ru

К сожалению, пока подобных моделей ноутбуков, называемых в народе «трансформеры», не так много, но они есть.

В целом, технологию сенсорного экрана можно охарактеризовать как наиболее удобную в случае, когда необходим мгновенный доступ к управлению устройством без предварительной подготовки и с потрясающей интерактивностью: элементы управления могут сменять друг друга в зависимости от активируемой функции. Тот, кто хоть раз работал с сенсорным устройством, сказанное выше прекрасно понимает.

Типы сенсорных экранов

Всего на сегодня известно несколько типов сенсорных панелей. Естественно, что каждая из них обладает своими достоинствами и недостатками. Выделим основные четыре конструкции:

  • Резистивные
  • Ёмкостные
  • Проекционно-ёмкостные
  • С определением поверхностно-акустических волн

Кроме указанных экранов, применяются матричные экраны и инфракрасные, но ввиду их низкой точности их область применения крайне ограничена.

Резистивные

Резистивные сенсорные панели относятся к самым простым устройствам. По своей сути, такая панель состоит из проводящей подложки и пластиковой мембраны, обладающих определенным сопротивлением. При нажатии на мембрану происходит её замыкание с подложкой, а управляющая электроника определяет возникающее при этом сопротивление между краями подложки и мембраны, вычисляя координаты точки нажатия.

Преимущество резистивного экрана в его дешевизне и простоте устройства. Они обладают отличной стойкостью к загрязнениям. Основным достоинством резистивной технологии является чувствительность к любым прикосновениям: можно работать рукой (в том числе в перчатках), стилусом (пером) и любым другим твердым тупым предметом (например, верхним концом шариковой ручки или углом пластиковой карты). Однако имеются и достаточно серьезные недостатки: резистивные экраны чувствительны к механическим повреждениям, такой экран легко поцарапать, поэтому зачастую дополнительно приобретается специальная защитная пленка, защищающая экран. Кроме того, резистивные панели не очень хорошо работают при низких температурах, а также обладают невысокой прозрачностью – пропускают не более 85% светового потока дисплея.

www.ferra.ru

Какие бывают сенсорные экраны

maxresdefault.jpg

Многие думают, что эра сенсорных экранов началась в нулевых, с выходом первых КПК (надеюсь, нет таких, кто думает, что первый сенсорный экран появился в iPhone?) Однако это не так — первым потребительским устройством с сенсорным дисплеем стал… телевизор в 1982 году. Годом позже появился первый сенсорный ПК от HP. Через 10 лет, в 1993 году, появился Apple Newton — родоначальник КПК, который ввел моду на стилусы (хотя это скорее была необходимость — экран-то резистивный), и уже в 2007 году с выходом iPhone появился современный емкостный экран в том виде, в котором мы все привыкли его видеть. Так что история сенсорных экранов насчитывает 35 лет, и за это время произошло достаточно много.

Резистивный экран


Уже из названия понятно, что лежит в основе таких дисплеем — это электрическое сопротивление. Устройство такого экрана просто: над дисплеем находится подложка (дабы при сильном нажатии его не деформировать), после чего идет один резистивный слой, изолятор и второй резистивный слой уже на мембране:
i.jpg
На левый и правый край мембраны и нижний и верхний край резистивного слоя на подложке подведено напряжение. Что происходит, когда мы нажимаем на такой дисплей? Резистивные слои замыкаются, сопротивление меняется, а значит меняется и напряжение — а это легко зарегистрировать, после чего, зная сопротивление единицы резистивного слоя, можно легко узнать сопротивление по обеим осям до точки нажатия, а значит и высчитать саму точку нажатия:

Touchscreen.png


Это — принцип действия четырехпроводного резистивного экрана, и такие уже больше не используются по одной простой причине: малейшее повреждение мембраны с резистивным слоем ведет к тому, что экран перестает корректно работать. А с учетом того, что в такой экран обычно тыкают острым стилусом, добиться повреждения отнюдь не трудно. 

Тогда решили сделать по-другому: мембрана стала токопроводящей, а на резистивном слое подложки теперь расположены все 4 электрода, но уже по углам, а напряжение подведено только к мембране — то есть экран стал пятипроводным. Что происходит при нажатии? Мембрана касается резистивного слоя, начинает идти ток, который снимается с 4 электродов, что опять же позволяет, зная сопротивление резистивного слоя, определить точку касания:

TouchScreen_5wires.svg.png


Вот этот тип уже более «вандалоустойчив» — даже при порезе мембраны экран продолжит функционировать нормально (кроме, разумеется, места пореза). Но, увы, это не отменяет других проблем, общих для всех резистивных экранов, а их много.

Во-первых, такой экран воспринимает только одно касание: несложно догадаться, что при нажатии сразу двумя пальцами экран будет думать, что вы нажали в середину линии, соединяющей точки нажатия. Вторая проблема — на экран действительно нужно давить, причем желательно острым предметом (ногтем, стилусом). Разумеется, привыкнуть к этому можно, но это зачастую приводило к характерным царапинам, что красоты экрану не добавляло. Третья проблема — такой экран пропускает не более 85% светового потока, и из-за его толщины нет ощущения того, что вы касаетесь пальцем изображения напрямую. 

Но, тем ни менее, у него есть и плюсы: во-первых, разбить дисплей в таком экране очень и очень сложно — у него «тройная защита» в виде мембраны, изоляторов и подложки. Второй плюс — экрану безразлично, чем вы в него тыкаете — с ним можно работать и в обычных перчатках (что зимой очень актуально). Но, увы, это достоинства не перевесили недостатки, и с выходом iPhone начался бум на емкостные экраны.

Поверхностно-емкостные экраны

Это, можно сказать, переходный тип между привычными нам емкостными экранами (которые являются проекционными) и старыми резистивными. Принцип действия тут схож с пятипроводным экраном: есть стеклянная пластина, покрытая резистивным слоем, и 4 электрода по углам, которые подают на пластину небольшое переменное напряжение (почему не постоянное — объясню чуть ниже). При нажатии на такой экран токопроводящим заземленным предметом мы получаем в месте нажатия утечку тока, которую легко можно зарегистрировать:
TouchScreen_capacitive.svg.png


Тут и разгадка, почему напряжение переменное — с постоянным при плохом заземлении могут быть перебои в работе, а с переменным такого нет. 

Проблем у них тоже хватает: экран теперь менее защищен, и при повреждении стеклянной пластины перестает работать весь. Опять же не поддерживается мультитач, и более того — теперь экран не реагирует на руку в перчатке или же стилусы — они в основном не проводят ток.

Единственный плюс такого экрана — он стал тоньше и прозрачнее резистивного, но в общем-то это оценили немногие. Но все изменилось с выходом iPhone, где применялся несколько другой тип сенсорного экрана, который уже поддерживал мультитач.

Проекционно-емкостные экраны

Вот мы уже и подобрались к современному типу сенсорных экранов. По принципу работы он существенно отличается от предыдущих — тут электроды расположены сеткой на внутренней стороне экрана (а не 4 электрода по углам), и при нажатии на экран палец образует с электродами конденсаторы, по емкости которых и можно определить местоположение нажатия:

739px-TouchScreen_projective_capacitive.svg.png

С таким устройством экрана можно нажимать на него сразу несколькими пальцами — если они расположены достаточно далеко (дальше, чем два соседних электрода в сетке), то такие нажатия будут определяться как разные — именно так и появился мультитач, сначала на 2 пальца в iPhone, а сейчас уже и на 10 пальцев в планшетах. Большее количество нажатий уже не нужно (людей больше чем с 10 пальцами маловато), да и определение одновременно больше чем 5-7 нажатий накладывает серьезную нагрузку на контроллер тача.

Из плюсов такого экрана, кроме поддержки мультитача — возможность сделать OGS (One Glass Solution): защитное стекло экрана с интегрированной сеткой электродов и дисплей представляют из себя одно целое: в таком случае толщина оказывается наименьшей, и кажется, что вы пальцами касаетесь изображения. Это же приводит к проблеме хрупкости: при появлении трещины на стекле гарантированно рвется сетка электродов, и экран перестает реагировать на нажатия. 

Это — основные типы сенсорных экранов, однако есть и многие другие. Начнем, пожалуй, с самого старого типа, с которого сенсорные экраны и начинались.

Инфракрасные экраны

Опять же принцип действия понятен из названия: по краям экрана расположено множество светоизлучателей и приемников в ИК-диапазоне. При нажатии палец перекрывает часть света, что и позволяет определить местоположение нажатия. Плюсами таких экранов на заре их появления было то, что ими можно было оснастить любой дисплей, что и было сделано с телевизором в 1982. Минусы также очевидны — толщина такой конструкции оказывается внушительной, а точность позиционирования — достаточно низкой.

Тензометрические экраны

Экраны, которые реагируют на нажатие (сильное нажатие). Огромный их плюс в том, что они максимально «антивандальные», поэтому их и применяют в различных банкоматах, стоящих на улице.

Индукционные экраны

Из названия опять же все понятно: внутри экрана есть катушка индуктивности и сетка проводов. При касании экрана специальным активным пером меняется напряженность созданного магнитного поля — с помощью этого и регистрируется нажатие. Самый главный плюс такого экрана — максимально возможная точность, поэтому они хорошо зарекомендовали себя в дорогих графических планшетах.

Оптические экраны

Принцип основан на полном внутреннем отражении: стекло подсвечивается инфракрасной подсветкой, и пока нажатия нет, на границе стекла и воздуха лучи света полностью отражаются (то есть нет преломленного луча). При нажатии на такой экран появляется преломленный луч, а по углу преломления (ну или отражения) можно высчитать точку нажатия.

Экраны на поверхностно-акустических волнах


Пожалуй, одни из самых сложно устроенных экранов. Принцип работы заключается в том, что в толще стекла создаются ультразвуковые колебания. При прикосновении к вибрирующему стеклу волны поглощаются, а специальные датчики по углам это регистрируют и высчитывают точку прикосновения:
11265_original.jpg
Плюсом этой технологии является то, что прикасаться к экрану можно любым предметом, не обязательно токопроводящим и заземленным. Минус — экран боится любых загрязнений, так что использовать его, например, в дождь, будет невозможно.

DST экраны

Их принцип действия основан на пьезоэлектрическом эффекте — при деформации диэлектрика он поляризуется, а значит — возникает разность потенциалов — а ее уже можно посчитать. Из плюсов — очень быстрая скорость реакции и возможность работы при серьезно загрязненном экране. Минус — для определения местоположения пальца он должен постоянно двигаться.

Вот в общем-то и все типы сенсорных экранов. Конечно, большинство из них диковинные и вы вряд ли с ними столкнетесь, но само разнообразие и развитие этой технологии радует.

www.iguides.ru

Разрешение, размеры, технологии, пиксели, типы тачскринов.

Главная страница » Какие виды дисплеев, используются в телефонах: Разрешение, размеры, технологии, пиксели, типы тачскринов.

Экран является неотъемлемым и важным элементом конструкции, которую называют современным мобильным телефоном. Уже не многие и вспомнят те времена, канувшие в Лета, когда говоря о достоинствах модели, подчеркивали, что у неё цветной дисплей. Это автоматически означало, что трубка из разряда тех, которые относятся к верхнему сегменту. А значит характеристики у аппарата на уровне флагманских.

В настоящее время разнообразие экранов, используемых для мобильных устройств очень велико. А потому даже самому привередливому покупателю удаётся найти вариант, удовлетворяющий все его требования. Но у этого разнообразия технологических решений и терминологии имеется и своя оборотная сторона. Ведь непрофессионалу порой очень в них разобраться. Для оказания помощи таким пользователям и написана наша статья.

В числе характеристик свойств, которыми обладает устройство ввода и вывода, а дисплей именно таковым и является, следует учитывать следующие параметры:

  • Величина экрана, то есть величина его диагонали. Для её измерения чаще всего используются дюймы (в одном дюйме два с половиной сантиметра).
  • Разрешение, говорящее о сумме активных точек, из которых формируется картинка.
  • Показатель, характеризующий плотность пикселей. Единицей измерения может служить либо DPI, либо PPI.
  • Конструкция тачскрина. Это сенсорное покрытие, которое реагирует на прикосновение.

Это список содержит критерии, на которые следует ориентироваться при выборе телефона. Именно о них и пойдёт речь дальше.

Размеры дисплея

Основная масса современных смартфонов имеет дисплеи с диагональю, значения которой могут колебаться от 4-х дюймов до 6-ти. Телефоны с меньшими экранами принято называть простыми «звонилками». А устройства с экранами больше 6″ уже относятся к планшетам.

Разрешение и DPI

Разрешение экрана является одной из наиважнейших характеристик экрана. От её размера в прямой зависимости находится качество картинки, воспроизводимой на экране мобильного устройства. Проще говоря, чем этот показатель выше, тем более плотно располагаются пиксели на одном дюйме. А значит, изображение будет более однородным.

На устройстве, имеющем внушительные габариты и невысокий показатель разрешения, картинка будет не только «зернистой», но и фрагментарной. Если же уровень разделительной способности достаточно высок, то информация, выводимая на экран, будет однородной и иметь плавность форм. В Full-HD-экранах используются элементы, которые просто невозможно разглядеть невооружённым глазом. Благодаря этому, получается, добиться сверхчёткого изображения.

Корпорация Apple ввела термин Retina display, чтобы обозначать экраны, имеющих плотность пикселей более трёхсот единиц на один дюйм (применимо к телефонам). Для глаза человека не под силу заметить отдельные элементы, высвечивающиеся на экране в подобных устройствах. Им воспринимается картинка полностью, точно также как это происходит с очертаниями реально существующих предметов. В настоящее время производство Retina display налажено на предприятиях таких известных компаний как LG, Sharp и Samsung.

Разрешения дисплея смартфона

В современных устройствах чаще всего встречаются ниже перечисленные разрешения дисплея:

  • 320 точек на 480. Этот формат уже почти не употребляется. Но его ещё можно встретить на бюджетных смартфонах. Картинка на нём высвечивается излишне зернистая. Что не прибавляет этому экрану популярности. Для обозначения используется термин HVGA.
  • 480 точек на 800 и 480 точек на 854 (WVGA). Часто используется для недорогих телефонов. Если диагональ устройства в пределах от 3,5″ до 4″, то изображение смотрится нормально. А вот если этот показатель больше, то изображение становится излишне фрагментированным.
  • 540 точек на 960 (qHD). Этот показатель является популярным у смартфонов, относящихся к средне-бюджетным. Качество выдаваемого изображения обеспечивается довольно приемлемое, но при условии, что диагональ находится в рамках от 4,5 дюйма до 4,8.
  • 720 точек на 1280. Это стартовая отметка для HD-смартфонов. Гарантируется великолепная детализация картинки на дисплеях до 5,5″. Но неплохо смотрится и на тех дисплеях, размер которых больше.
  • 1080 точек на 1920 — Full-HD матрицы. Изображение, предоставляемое ими наивысшего качества. Все флагманские смартфоны используют именно этот вариант.

В отдельную группу надлежит выделить те дисплеи, которые устанавливаются на продукцию, производимую компанией Apple:

  • На модели iPhone4/4s — 640 точек на 960 при диагонали 3,5″.
  • На моделях iPhone 5/5c/5s — 640 точек на 1136 с диагональю 4″.
  • На iPhone 6 — 750 точек на 1334 при диагонали 4,7″.

Выбирая новый смартфон необходимо помнить о размерах дисплея и DPI. Не стоит приобретать устройство, имеющее меньшую плотность пикселей, чем та, сто была на предыдущем телефоне. К его изображению придётся долго привыкать, а глаза не будут чувствовать себя комфортно.

А если сумма точек на один дюйм не будет превышать показателя 200, то у некоторых пользователей так и не получается привыкнуть. На это необходимо концентрировать внимание, покупая телефон, имеющий большую диагональ. Ведь если разрешением 480 точек на 800 выдаётся порядка 233 DPI при диагонали 4″, то на 5″ этот показатель будет равен только 186.

Какие существуют технологии производства, и виды дисплеев смартфонов

Сегодня выделяются два основополагающих направления, когда речь идёт о технологии изготовления экранов:

  • LCD — с использованием жидкокристаллических матриц.
  • OLED — используются органические светодиоды.

Первые имеют несколько большее распространение. Для них принято деление на следующие группы:

  • TN-матрицы, являются самыми распространёнными дисплеями в телефонах, имеющих сенсорные экраны. К числу их достоинств следует отнести невысокую стоимость и высокий показатель скорости отклика (время, за которое пиксель реагирует на поступление напряжения). В числе недостатков не очень высокое качество передачи цвета и не очень хороший угол обзора.
  • IPS-матрицы, можно назвать следующим шагом на пути эволюции устройств для отображения. Достаточно высокая цена изначально привела к тому, что технологию применяли исключительно для профессиональных мониторов. Но со временем она стала применяться и в мире телефонов и смартфонов. С их помощью удалось добиться отличной цветопередачи. Также хороши такие показатели как угол обзора, который достигает 178 градусов, уровень чёткости и контрастности. Высокой стоимостью экранов объясняется, почему они практически не используются на смартфонах, цена которых не превышает 200 американских долларов.
  • PLS-матрица — попытка, предпринятая компанией Samsung, создания решения, у которого не будет недостатков, присущих TN-матрицам. И при этом они должны были быть дешевле, чем IPS. Фактически это модификация IPS при которой добиваются снижения затрат на производство. Это происходит благодаря тому, что применяются компромиссные решения.

Отличие органических дисплеев (OLED, AMOLED) от LCD аналогов, заключается в том, что в них вместо жидких кристаллов используются микроскопические светодиоды. Использование таких экранов делает ненужной дополнительную подсветку. Ведь в ЖК-матрицах всегда используются диоды, размещённые по периметру экрана. Их свет благодаря использованию слоя отражателей, направлен на матрицу.

На энергопотребление OLED-дисплеев оказывается влияние цветом изображения, которое передаётся. На тёмных оттенках удаётся сэкономить относительно светлых, для отображения которых энергии потребляется больше чем у ЖК.

Теоретические выкладки убеждают, что практически все параметры этих дисплеев лучше, чем у LCD. Однако практика иногда расходится с теорией и достижение идеальной картинки не всегда удаётся воплотить в жизнь. Серьёзный недостаток этих изделий — их невысокая надёжность. Попыткой разработать экран, который бы мог использоваться на сенсорных смартфонах, называют Super AMOLED дисплей.

У него тачскрин и отображающая поверхность — единое целое. Благодаря уменьшению толщины удалось достичь лучшего показателя яркости, очень неплохой цветопередачи и оптимальных углов обзора. Однако при этом происходит и снижение механической прочности изделия.

Какими бывают сенсорные экраны

Самыми распространёнными принято считать дисплеи двух видов:

  • Ёмкостные.
  • Резистивные.

В резистивных используются два слоя. На их поверхность наносятся дорожки проводников, которые не имеют цвета. В месте касания изменяется сопротивление тока, что позволяет вычислить координаты места, на которое производится нажатие. Сегодняшние реалии таковы, что эти экраны практически не используются на смартфонах. Их область применения — бюджетные модели.

Резистивные тачскрины хороши тем, что они недорого стоят и нажим может осуществляться чем угодно. К негативным сторонам принято относить невысокая продолжительность функционирования, незащищённость от царапин, снижение яркостных показателей экрана.

Яркость экрана, имеющего ёмкостный сенсор, выше. На нём не остаются царапины, что объясняется использованием стекла. Однако его производство довольно сложно. И он не может реагировать на прикосновение посторонних предметов.

Основой для работы технологии является расчёт координат места, где происходит утечка тока в момент прикосновения пальцем. В таких тачскринах один слой стекла, внутренняя сторона которого используется для нанесения токопроводящего слоя. Но возможны варианты, когда используются стекло вкупе с сенсорной плёнкой.

В последнее время для ёмкостных экранов используется специальным образом закалённое стекло, похожее на Gorilla Glass. Благодаря этому достигается высокий уровень устойчивости к повреждениям, наносимым механическим путём. Нанесение на тачскрины мобильных устройств специального олеофобного покрытия позволяет защитить их от загрязнения. Размеры дисплея в разных системах измерения здесь.

androidios.org

Типы сенсорных экранов. Какой сенсорный экран лучше.

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров. Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, инфокиосках и т.д. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим какие же бывают типы сенсорных экранов, их достоинства и недостатки, а также какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные. В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные. Основным их отличием является тот факт что: резистивные экраны распознают нажатие, а емкостные касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет из себя LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг к другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран, гибкий верхний слой прогибается и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в резульате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (мультитач), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении с временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя чем сенсорный экран.

Примение: сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, Tablet PC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные. Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Резистивный сенсорный экран

При косании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают мультитач и касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение: инфокиоски, в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Резистивный сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале, микроконтроллером последовательно подается напряжение и измеряется амплитеда возникающего в результате импульса тока. По мере приблежения пальца к экрану емкость электродов находящихся под пальцем изменяется и таким образом, контроллер определяет место касания, т.е. координаты косания, это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка мультитач, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов, и как следствие больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение: платежные терминалы, банкоматы, электронные киоски на улицах, тачпады ноутбуков, iPhone, iPad, коммуникаторы и т.д.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. В доль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглащение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой мартицей экрана и таким образом, вычисляются координаты косания экрана.

Резистивный сенсорный экран

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат чем у емкостных, т.е. рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии аккустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами поглощающими аккустические волны.

Применяются сенсорные экраны ПАВ в основном в охраняемых инфокиосках, в образовательных учреждениях, в игровых автоматах и т.д.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух, прилегающих друг к другу сторон сенсорного экрана, расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером и таким образом определяются координаты касания.

Резистивный сенсорный экран

Инфракрасные сенсорные экраны используются в основном в инфокиосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие как оптические, тензометрические, индукционные и т.д.). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны. Рассмотрим основные характеристики сенсорных экранов в виде сравнительной таблицы.

Основные сравнительные характеристики сенсорных экранов.

 РезистивныеЁмкостныеПроекционно-емкостныеПАВИК
Мультитач+++
Прозрачность, %75-85909095100
ТочностьВыс.Выс.Выс.Выс.Выс.
Измерение силы нажатия++
Нажатия рукой в перчатке++++
Нажатия проводящим предметом++++
Нажатия непроводящим предметом++
Защита от грязи+++

Автор: MC,
21.01.2011 г.

www.mobi-city.ru

Работа с сенсорным экраном. Типы сенсорных экранов. Какой сенсорный экран лучше

20.07.2016 14.10.2016 by Почемучка

История создания сенсорного экрана.

Сегодня сенсорным дисплеем, а вернее экраном с возможностью введения информации посредством касания, никого не удивишь. Практически все современные смартфоны, планшетные ПК, некоторые электронные книги и другие современные гаджеты оснащены подобными устройствами. Какова же история этого чудесного устройства ввода информации?

Считается, что родителем первого в мире сенсорного устройства является американский преподаватель университета штата Кентукки, Сэмуэль Херст. В 1970 году он столкнулся с проблемой считывания информации с огромного количества лент самописцев. Его идея автоматизации этого процесса стала толчком к созданию первой в мире компании по производству сенсорных экранов – Elotouch. Первая разработка Херста и его единомышленников носила название Elograph. Она увидела свет в 1971 году и использовала четырех проводной резистивный метод определения координат точки касания.

Первой же компьютеризированным устройством с сенсорным дисплеем была система PLATO IV, появившаяся на свет в 1972 году благодаря исследованиям, проходившим в рамках компьютерного обучения в США. Она имела сенсорную панель, состоящую из 256 блоков (16×16), и работающую при помощи сетки инфракрасных лучей.

В 1974 году снова дал о себе знать Сэмюэль Херст. Образованная им компания Elographics выпустила прозрачную сенсорную панель, а еще через три года в 1977 ими была разработана пяти проводная резистивная панель. Спустя несколько лет компания объединяется с крупнейшим производителем электроники Siemens и в 1982 году они совместно выпускают первый в мире телевизор, оборудованный сенсорным экраном.

В 1983 году производитель компьютерной техники компания Hewlett-Packard выпускает компьютер HP-150, оборудованный сенсорным дисплеем, работающим по принципу инфракрасной сетки.

Первым мобильным телефоном с сенсорным устройством для ввода информации была модель Alcatel One Touch COM, выпущенная в 1998 году. Именно она стала прообразом современных смартфонов, хотя и имела по сегодняшним меркам весьма скромные возможности – небольшой монохромный дисплей. Еще одной попыткой смартфона с сенсорным экраном стала модель Ericsson R380. Она также имела монохромный дисплей и была весьма ограничена в своих возможностях.

Сенсорный экран в современном виде предстал в 2002 году в модели Qtek 1010/02 XDA, выпущенной компанией HTC. Это был полноцветный дисплей с достаточно хорошей разрешающей способностью, поддерживающий 4096 цветов. Он использовал резистивную технологию определения координат касания. На более высокий уровень сенсорные экраны вывела компания Apple. Именно благодаря ее IPhone, устройства с сенсорными дисплеями получили невероятную популярность, а их разработка Multitouch (определение касания двумя пальцами) существенно упрощала ввод информации.

Однако появление сенсорных экранов стало не только удобным новшеством, но и повлекло за собой некоторые неудобства. Электронные устройства, оснащенные сенсором, более чувствительны к неаккуратному обращению, поэтому и ломаются чаще. Ломаются даже экраны в Iphone. Благо, что заменить их может даже неквалифицированный специалист.

Как устроен сенсорный экран.

Такая диковинка как сенсорный экран – дисплей с возможностью ввода информации простым нажатием на его поверхность при помощи специального стилуса или просто пальца, давно уже перестал вызывать удивление у пользователей современных электронных гаджетов. Давайте попробуем разобраться, как же он работает.

На самом деле видов сенсорных экранов существует достаточно большое количество. Друг от друга они отличаются принципами, заложенными в их работе. Сейчас на рынке современной высокотехнологичной электроники используются в основном резистивные и емкостные сенсоры. Однако существуют также матричные, проекционно-емкостные, использующие поверхностно-акустические волны, инфракрасные и оптические. Особенность двух первых, самых распространенных в том, что сам сенсор отделен от дисплея, поэтому при поломке его с легкостью может заменить даже начинающий электромастер. Вам останется лишь купить тачскрин для сотового или любого другого электронного устройства.

Резистивный сенсорный экран состоит из гибкой пластиковой мембраны, на которую собственно мы и нажимаем пальцем, и стеклянной панели. На внутренние поверхности двух панелей нанесен резистивный материал, по сути, являющийся проводником. Между мембраной и стеклом равномерно расположен микроизолятор. Когда мы нажимаем на одну из областей сенсора, в этом месте замыкаются проводящие слои мембраны и стеклянной панели и происходит электрический контакт. Электронная схема-контроллер сенсора преобразует сигнал от нажатия в конкретные координаты на области дисплея и передает их в схему управления самим электронным устройством. Определение координат, а вернее ее алгоритм, очень сложен и основан на последовательном вычислении сначала вертикальной, а потом горизонтальной координаты контакта.

Резистивные сенсорные экраны достаточно надежны, поскольку нормально функционируют даже пр

offlink.ru

Какие типы сенсорных экранов бывают в телефонах

Все привыкли, что смартфоны реагируют на касания к экрану. Для этого в современные телефоны встроены сенсорные экраны. Но технологии реагирования на касание бывают разные. Читайте, как работают и какие бывают типы сенсорных экранов. Их плюсы и минусы.

Любой сенсорный экран состоит из трех основных элементов:

  • датчика,
  • контроллера,
  • программного драйвера.

Что такое сенсорный резистивный экран

резистивный тачскринрезистивный тачскрин

Резистивный сенсорный экран состоит из нескольких слоев. Верхнее покрытие гибкое. Его цель при касании прогибаться и замыкать ток в определенном месте экрана. Для этого есть нижний слой, состоящий из этаких контактов, через который течет ток.

Между этими двумя слоями есть прозрачный наполнитель. Он изолирует слои друг от друга. Но когда происходит касание, он как бы продавливается и  возникает движение тока в определенном месте экрана. Контролер смартфона преобразует получившийся сигнал в координаты X и Y и дает указание программе (драйверу) обработать сигнал и отреагировать на него.

Резистивные экраны были первыми, которые появились в смартфонах. Но они были достаточно медленными, не очень точными. Сначала ими можно было пользоваться только с помощью стилуса. Потом уже появились резистивные экраны, которые правильно воспринимали касание пальцем. Но все равно они оставались достаточно медленными. Поэтому им на смену пришли ёмкостные сенсорные экраны.

Что такое ёмкостной сенсорный экран

типы сенсорных экрановтипы сенсорных экранов

Как ни странно это звучит, но через экран емкостного экрана течет ток. И когда вы дотрагиваетесь до него, возникает электростатический заряд. Именно он и обрабатывается контроллером.

Этот тип сенсорного экрана имеет очень хорошую точность и скорость обработки. Из минусов, если вы зимой в перчатках попробуете касаться экрана, то он может и не отреагировать. Это самый популярный и распространенный тип сенсорного экрана.

Первые такие экраны могли обрабатывать только одно касание. Но потом появились мультитач экраны. Такие могли обрабатывать сразу несколько касаний!

Но и это еще не все. Теперь в дорогих флагманах уже появились мультитач емкостные экраны, которые распознают и силу давления на экран!

Что такое чувствительный к силе нажатия сенсорный экран

Такие сенсоры являются развитием технологии емкостных тачскринов. Только теперь они реагируют не только на место касания, но и на силу нажатия. У Apple такие экраны называются 3D Touch. Так как появляется третье измерение, кроме осей x и y. А в игровом смартфоне Black Shark 2 эта технология называется MagicTouch.

Все типы сенсорных экранов:

sravnismart.ru

Описание и виды сенсорных экранов, полезная информация

Техника не стоит на месте и одним из доказательств этого являются экраны компьютеров, телефонов и прочих предметов. Если раньше устройства позволяли лишь выводить изображение на экран, то на сегодняшний  день посредствам сенсоров можно взаимодействовать непосредственно с самим устройством.   

Некоторое время назад сенсорными экранами были оснащены некоторые виды карманных компьютеров, но в настоящий момент данной функцией обладают всевозможные телефоны, фотокамеры, видеокамеры и другие устройства. 

Но за всей этой простотой скрывается огромная работа и сложный процесс. Сами сенсорные экраны подразделяются на четыре вида, о которых и хотелось бы вам немного рассказать. 


Резистивные сенсорные экраны


   Эта технология огромную популярность обрела среди мобильных устройств. Резистивный сенсорный экран представляет собой LSD дисплей с двумя прозрачными пластинами, которые наложены на него. Разделены эти пластины диэлектрическим слоем. Нижняя пластина достаточно жестко прикреплена на самом экране, а вот верхняя — более гибка, что позволяет без проблем нажимать на нее. На две поверхности, которые обращены друг к другу, нанесены проводники, что и обеспечивает возможность формирования эл. сигнала при нажатии. 

Плюсами такой системы является то, что она проста в использовании и имеет сравнительно небольшую стоимость. Здесь можно нажимать на экран пальцем и иным другим предметом. 

Емкостные сенсорные экраны

Делятся на два типа — проекционно-емкостные и поверхностно-емкостные. Первый вариант представляет собой стекло, на которое нанесен проводящий материал горизонтальными ведущими линиями и проводящий материал вертикальными определяющими линиями. Они, в свою очередь, разделены слоем диэлектрика.   

  Большим достоинством этого типа является то, что производится быстрая скорость отклика во время нажатия и более точно происходит координирование. Кроме этого, поддерживается функция мультитач.   

  Второй вариант, то есть поверхностно-емкостные сенсорные экраны, представлен в виде стекла, на которое уже нанесено очень тонкое и прозрачное проводящее покрытие, а уже сверху него нанесен защитный слой.   

Сенсорные экраны ПАВ 


  Теперь хотелось бы немного рассказать о третьем типе сенсорных экранов – сенсорные экраны ПАВ (поверхностно-акустические волны). Принцип работы у данного вида экрана таков: по его углам размещаются пьезоэлементы, преобразующие электрический сигнал, подаваемый на них, в ультразвуковые волны, далее направляя эти волны вдоль поверхности экрана. А вот распределяют по всему экрану ультразвуковые волны специальные отражатели, которые равномерно расположены вдоль краев одной из стороны. На противоположной стороне имеются сенсоры, которые уже фокусируют эти волны и передают их на преобразователь. Затем преобразователь преобразует ультразвуковую волну назад в электрический сигнал. Как видите, технология весьма сложна, о чем абсолютно не задумываешься во время работы с таким экраном. Такой экран имеет высокую прозрачность и долговечность.   

Инфракрасные сенсорные экраны


И в завершении, хочется упомянуть о последнем виде сенсорных экранов – инфракрасные сенсорные экраны. У данного типа довольно простой принцип работы. Вдоль прилегающих друг к другу сторон экрана располагаются светодиоды, которые и излучают инфракрасные лучи. Принимают эти лучи фототранзисторы, которые располагаются на противоположной стороне экрана. 

  Такой вид, обычно используется в инфокиосках и торговых автоматах. Достоинствами является простота и возможность ремонта схемы, а также прозрачность экрана.   

Но кроме основных четырех видов сенсорных экранов, на сегодняшний момент имеются и другие виды, которые хотелось бы Вам представить. 

Матричные сенсорные экраны

 В первую очередь, это матричные сенсорные экраны, которые имеют очень низкую частотность и весьма популярны в настоящее время. Конструкция таких экранов аналогична сенсорным резистивным экранам, но все-таки имеет свои индивидуальные особенности, так как она (то есть конструкция) упрощена до возможного предела.   

Здесь на стекло нанесены специальные проводники, которые расположены горизонтально. А вот на самой мембране располагаются такие же, только вертикальные проводники. 

  Когда пользователь прикасается к экрану, то эти проводники соприкасаются друг с другом, в результате чего специальный контроллер определяет, какие проводники замкнулись, после чего передает соответствующие координаты в микропроцессор.   

Достоинством такой системы является небольшая стоимость данного типа экрана, его неприхотливость и простота в работе. Обычно сенсорные матричные экраны опрашиваются по срокам, что позволяет наладить мультитач. Со временем, то есть по прошествии срока годности, такие экраны заменяются резистивными. 

Оптические сенсорные экраны

 Следующий тип сенсорных экранов – это оптические сенсорные экраны. Несмотря на свою простоту в применении, конструкция и устройство данного типа экранов весьма сложны. Здесь стеклянная панель снабжена специальной, разработанной для этого, инфракрасной подсветкой. Имеется здесь и такая граница, которая называется «стекло-воздух». Именно на этой границе и образуется полное внутренне отражение. Но кроме этого, имеется и другая граница — «стекло-посторонний предмет», где свет начинает рассеиваться.   

  Все, что остается сделать устройству — заснять эту самую картинку рассеивания. Но для того, чтобы это произошло, существует две технологии.   

Первая из этих технологий – заснятие картины в проекционных экранах, где рядом с самим проектором устанавливается камера. К примеру, так устроен Microsoft PixelSense. 
  Второй тип технологии – с помощью дополнительного четвертого субпикселя самого жидкокристаллического экрана. Он помогает добиться дополнительной светочувствительности.   

  Плюсами данных экранов является то, что здесь имеется мультитач и, кроме этого, имеется возможность отличать нажатие на экран рукой или же иным предметом. Может быть реализован в больших сенсорных поверхностях, даже в виде классной доски.   

Тензометрические сенсорные экраны

 Тензометрические сенсорные экраны – это третий тип, который хотелось бы вам представить. Подобные экраны можно встретить на улице, в каких либо общественных автоматах. Их принцип работы заключается в том, что они реагируют на деформацию самого экрана.   

  Но если сказать честно, точность тензометрических сенсорных экранов невелика, так как чувствительность здесь совсем маленькая. Возможно, это разработано специально, так как предназначаются такие экраны для общественных мест. Лучше всего их применять, когда необходимо нажатие твердым предметом. Но все-таки в этой системе и есть свой плюс: так как тензометрические экраны отлично выдерживают механическое воздействие  и применимы в антивандальных устройствах, что вполне востребовано на улицах наших городов.   

  Применение таких экранов полностью аналогично применению проекционно-емкостных сенсорных экранов, то есть в банкоматах, билетных автоматах и прочих  устройствах, которые располагаются на улице или в общественных местах.   

  Из плюсов тензометрических сенсорных экранов хотелось бы выделить и устойчивость к перепадам температуры, а также вглагоустойчивость данного устройства.   

Сенсорные экраны DST

 Очередной вид сенсорных экранов — это сенсорные экраны DST. Сегодня это одни из самых популярных сенсорных экранов. Их не перестают модернизировать и улучшать. Но если сказать честно, то до идеальной работы подобного типа экрана еще далеко. Но все-таки о работе сенсорных экранов DST стоит рассказать отдельно.   

Суть их работы заключается в том, что они реагируют на деформацию стекла, после чего передают полученный сигнал в запрограммированную память устройства и совершают необходимое действие. 

  Здесь можно нажимать на экран, как рукой, так и другим предметом, на который также реагирует аппарат.   

  Несмотря на простоту этого устройства, он все же очень быстро реагирует на поставленную задачу, что является безусловным плюсом. Но достоинством этого сенсорного экрана является не только быстрая реакция, но  и возможность работы с ним даже тогда, когда сильно загрязнен экран. То есть грязи и пыли этот тип сенсорных экранов не боится.   

  Что же касается иных особенностей, то сенсорный экран DST очень прочный и может выдерживать существенные перепады температур. Срок годности при правильной эксплуатации достаточно велик .   

Индукционный сенсорный экран

И последний тип экранов, с которым Вас хотелось бы ознакомить – это индукционный сенсорный экран. Принцип работы таких экранов основан на наличии магнитной индукции. 

  Технология, которая использованна в создании этого типа экрана, довольно распространена и используется в основном в мобильных телефонах, а также в некоторых моделях карманных и мобильных компьютеров. Кстати, именно этот тип экранов использован в дорогостоящих графических планшетах.   

В принципе, индукционный сенсорный экран – это и есть графический планшет, который имеет встроенный экран. Но есть очень важное «но» — на этом экране нельзя работать пальцами рук, так как их прикосновение экран просто не определяет. Для работы с ним предназначаются специальные аксессуары, такие как перо или стилус. 

  Конечно, работа экрана от нажатия пальца не исключена, но более точные и четкие задачи он будет выполнять при нажатии специальным, сделанным для этого, предметом.   

  Применяется этот экран, когда необходима быстрая реакция нажатия стилусом, например, на художественных планшетах или же некоторых моделях персонального компьютера. 

brigo.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *