Меню

Матрица в камере это – Матрица фотоаппарата – сенсор камеры, виды матриц цифровых фотоаппаратов – ФотоКто

Содержание

что это и почему она так важна?

Поделиться статьёй:

При выборе фотоаппарата нужно учитывать множество нюансов, обращать внимание на каждую деталь. И далеко не последнюю роль в процессе выбора играют именно характеристики матрицы, которой оснащена камера. Что же представляет собой эта самая матрица и почему она так важна? Давайте это выясним! 

Содержание статьи:

 Общее представление о матрице фотоаппарата 

Если вы посмотрите в объектив камеры, вы легко найдете матрицу: видите блестящий прямоугольник в самом центре объектива? Да, это она и есть.

Матрица является важнейшим элементом фотокамеры, отвечающим за то, какое изображение мы получим в результате съемки. 

По сути она представляет собой микросхему, которая состоит из светочувствительных элементов. Когда на нее падает свет, начинается формирование электрического сигнала определенного уровня интенсивности, который зависит от степени яркости света. При съемке она фиксирует свет, который впоследствии преобразуется в фотографию. 

Кстати, количество мегапикселей, которое имеет фотокамера, также зависит именно от матрицы и может колебаться от 0.3 до 10 и более (чем дороже и качественнее фотоаппарат, тем больше мегапикселей он имеет).

Изначально матрица создает монохромное (ч.б) изображение. В цветное оно преобразуется благодаря светофильтрам, которыми покрываются ее составные части.

Особенности строения матрицы

Что касается структуры матрицы, то она является дискретной и складывается из множества частей, в совокупности преобразующих падающий на нее свет. Один фотодиод в составе создает один пиксель фотографии.

Как вы наверняка знаете, каждое цифровое изображение представляет собой что-то вроде мозаики, состоящей из множества точек, которые в совокупности и являются фотографией. Изображение не «распадается» именно потому, что этих точек очень много и они имеют высокую плотность расположения относительно друг друга. Вполне логично предположить, что если бы плотность их расположения была ниже, мы бы увидели, как изображение распадается на эти самые точки, и это было бы наглядной демонстрацией дискретного характера структуры матрицы.

Матрица как альтернатива пленки

В те времена, когда цифровой фототехники еще не существовало, светочувствительным элементов, выполняющим функции матрицы, была пленка. Если проанализировать устройство пленочных и цифровых фотоаппаратов, можно увидеть, что существенных отличий между ними не так уж много. Основным отличием как раз и будет схема приема и преобразования света.

Как именно происходит процесс приема света в фотокамере с пленкой? В тот момент, когда фотограф нажимает кнопку спуска, затвор открывается, в результате чего пленка принимает свет.  До того, как затвор вновь закрывается, идет химическая реакция, а ее итогом является формирование фотографии. 

Как вы можете заметить, процесс создания фотоснимка был совершенно иным, и в современных фотоаппаратах матрица выполняет именно функцию пленки, то есть генерирует изображение. Они выполняют совершенно одинаковые функции, разница состоит лишь в технике их выполнения и в хранилище созданного изображения, которым в первом случае выступает пленка, а во втором — карта памяти фотоаппарата. 

Характеристики матрицы

Необходимо понимать, что матрицы бывают совершенно разными по качественным показателям. В этом вопросе важным сигналом будет цена: в том или ином ценовом сегменте матрицы имеют определенный уровень качества. Будьте готовы к тому, что бюджетные варианты фотоаппарата вряд ли будут обладать высококачественной матрицей. Поскольку матрицу можно смело назвать сердцем камеры, не стоит экономить при выборе. Вы ведь хотите, чтобы ваши снимки были на высоте? Тогда остановите свой выбор на фотоаппарате, оснащенном качественной матрицей. 

По каким параметрам следует выбирать матрицу?

  1. Размер
  2. Разрешение
  3. Соотношение сигнал-шум
  4. Уровень светочувствительности
  5. Динамический диапазон

Итак, рассмотрим первый параметр из нашего списка, а именно — размер матрицы. Его определяет величина пикселей, а также плотность их расположения относительно друг друга. Меньшая плотность расположения пикселей дает меньший уровень нагрева матрицы и более сильное соотношение сигнала и шума, которое создает более четкую фотографию. 

Учтите, что именно размер матрицы является ее главной характеристикой. При выборе на него нужно обратить особое внимание. 

Что же обеспечивает размер матрицы и почему он является таким важным параметром?

Итак, размер матрицы диктует:

  1. Уровень шума фотографии
  2. Глубину и насыщенность ее цвета
  3. Динамический диапазон
  4. Размер фотокамеры

Больший размер матрицы обеспечивает:

  1. Низкие показатели шума на фотографии. Матрица, имеющая большую поверхность, принимает больше света. Это будет сопряжено с меньшим нагревом, меньшей погрешностью в процессе квантования, соответственно, меньшим уровнем воздействия нежелательных шумов. Чем больше физический размер матрицы, тем меньше посторонних шумов будет на снимке, даже если съемка осуществляется при низком уровне освещения. Если говорить проще, фотография не будет пестрить лишними точками, точно не способствующими эстетике снимка. 
  2. Широкий динамический диапазон
  3. Насыщенные, глубокие цвета снимка

Глубина цвета является показателем, который определяет возможность камеры идентифицировать любые метаморфозы цвета, даже самые незначительные. Это особенно ценно для фотографий однотонных пейзажей, не имеющих резких цветовых переходов. Большая матрица способна уловить даже самый незначительный цветовой переход, в то время как маленькая не имеет такой возможности. 

Единственный недостаток, с которым придется смириться при выборе большой матрицы, это размер самой камеры. Чем больше матрица, тем больше размер камеры. Строго говоря, это вряд ли можно считать серьезным недостатком, учитывая широкий спектр преимуществ, которые дает матрица большого размера. 

Виды матрицы

Он определяет способ работы матрицы.

На этом основании матрицы делят на 2 технологии:

  1. CMOS
  2. CCD

Конечная цель является одинаковой: накопление света. Разница в том, что является элементом, составляющим структуру. В первой технологии это диод, а во второй — транзистор. 

Если говорить о качестве фотографий, то плюсом CCD-технологии были более приятные глазу цвета, а CMOS-технология выгодно отличалась гораздо меньшим уровнем шума. 

В наше время подавляющее большинство камер оснащено матрицей CMOS. 

Чувствительность матрицы

Она является очень важным параметром. Чем большую чувствительность установить, тем больше возможность зафиксировать на фотографии плохо освещенные объекты. Но при таких условиях будут также увеличиваться нежелательные шумы. 

Параметр IS0 является эквивалентным показателем чувствительности. 50 — самый низкий показатель чувствительности, при котором чистое фото не подвергается разрушению шумом. 

Сигнал-шум

Это параметр, который находится в непосредственной связи с чувствительностью.  Он определяет уровень света и шумов на снимке. 

Нужно помнить, что любое фото имеет определенный показатель шума. Светочувствительность характеризуется тем же. Она не может иметь статичных показателей. Они будут меняться, и эти изменения зависят от условий съемки. 

Даже если свет совсем отсутствует, фотодатчик все равно продемонстрирует в итоге определенное значение. Как раз это и является шумом. Чтобы получить качественную фотографию, сигнал должен побороть помехи на определенном уровне. Это явление и носит название «сигнал-шум». 

Чтобы фотография получилась четкой и не имела нежелательных шумов, нужно правильно настроить фильтры, чтобы они не пропустили эти помехи. 

Если увеличивать уровень чувствительности матрицы, действие фильтра будет ослабевать, чтобы поймать слабый сигнал. Но одновременно с этим на снимке отразятся и шумы. Поэтому, чтобы не нужно было усиливать чувствительность, необходимо правильно настроить выдержку. 

Что нужно сделать, чтобы ослабить помехи?

Чтобы уровень шума был минимальным, необходимо настраивать минимальную чувствительность матрицы. Однако эта возможность напрямую зависит от того, позволяет ли это выдержка камеры. 

Если же требуется уменьшать выдержку, то одновременно с этим необходимо увеличивать чувствительность, что в свою очередь приведет к увеличению уровня шума. Определенное значение приведет к тому, что шумы станут видны на снимке. Потому при съемке выбор стоит между уменьшенной чувствительностью и уменьшенным временем выдержки. 

Все это говорит в пользу выбора камеры с большим размером матрицы, позволяющего снижать уровень шума и уменьшать выдержку, чтобы снимать объекты в движении без ущерба качеству изображения.

Разрешение матрицы

Этот параметр для многих является очень важным при выборе камеры. Так ли это? Попробуем разобраться. 

Размер пикселя является очень важным параметром, и вот почему это так: когда пиксель больше по размеру, он способен «поймать» больше света. Матрица подобного типа будет давать меньшее количество шумов.  

Если матрица имеет большее разрешение, то размер пикселей, которые ее составляют, меньше, а это стимулирует нагрев и поднимает уровень шумов.

Отличительные черты размера пикселя:

  1. Уровень шумов. Как уже было сказано выше, меньший размер пикселя предполагает высокий уровень шумов.
  2. Уровень шевеления. Чем меньше размер пикселя, тем выше его чувствительность к дрожанию и смещению камеры. 
  3. Высокие требования к объективу камеры. Чем меньше размер пикселя, тем более высокая разрешающая способность объектива потребуется для качественных снимков.
  4. Чем больше разрешение фотоаппарата, тем большие возможности должен иметь компьютер, который будет обрабатывать снимки. Если вы хотите получить от съемки отличный результат, но не занимаетесь фотографированием в RAW, то вам предстоит довольно продолжительная и непростая работа в фоторедакторах на компьютере. А при редактировании снимков в очень высоком разрешении, например, составляющем 24 мегапикселя и выше это и вовсе может стать очень сложной задачей. 

Динамический диапазон матрицы

Он устанавливает максимальный диапазон яркости фотографии. Каждый из пикселей, составляющих матрицу, имеет свой уровень яркости. Функцией динамического диапазона является идентификация широты яркого участка снимка, который способен охватить фотоаппарат без ущерба качеству наиболее темных и наиболее ярких частей кадра. 

Динамический диапазон является статичной характеристикой матрицы. Его невозможно изменить. Правда, есть возможность сделать его более узким, если повысить чувствительность ISO, но это далеко не всегда сможет решить проблему. Строго говоря, это даже нежелательно. 

Когда фотоаппарат не справляется с трудными условиями съемки, например, если снимать нужно против солнца, мы получаем на фотографии слишком сильные контрасты, которые действительно режут глаз. При взгляде на такие фотографии даже непрофессионал вынесет кадру строжайший вердикт и, конечно, будет совершенно прав. 

При таких результатах съемки говорят, что динамический диапазон матрицы не справляется с условиями, в которых ведется съемка. Обычно для исправления этих недостатков нужно менять компоновку кадра, прибегать к разного рода профессиональным хитростям, которые сгладят досадные несовершенства, словом, делать все то, что с динамическим диапазоном фотоаппарата совершенно не связано, поскольку, как мы уже упомянули выше, менять его показатели невозможно, поскольку они статичны. 

Поделиться статьёй:

Типы и размеры матриц камер видеонаблюдения

Светочувствительная матрица — важнейший элемент видеокамеры, который обеспечивает качество изображения на 90%. Представляет собой интегральную микросхему, состоящую из фотодиодов. Сенсор генерирует видеопоток, преобразуя проецируемое в него оптическое изображение в аналоговые электрические импульсы. В сетевых видеокамерах эти импульсы сразу преобразовываются в цифровой поток данных за счет наличия в системе АЦП, сразу обрабатывающего сигнал.

Сенсоры имеют ряд характеристик, важнейшие из которых — вид, разрешение и размер матрицы камеры видеонаблюдения. От этих параметров зависит быстродействие устройства, уровень его энергозатратности, а также конечное качество воспроизводимого камерой видео.

Типы матриц, которые используют в современных камерах видеонаблюдения

  • CCD (ПЗС). Характеризуются лучшей светочувствительностью, обеспечивают хорошую цветопередачу и низкий уровень шума на изображении. Это достигается за счет последовательного считывания зарядов в каждой ячейке сенсора. Однако принцип действия таких матриц слишком медленный и не удовлетворяет современное видеонаблюдение с большими разрешениями и высокой кадровой частотой. Кроме того, такие сенсоры энергозатратны, дороже в производстве и сложнее в эксплуатации. В современных цифровых камерах важно какая матрица используется. Поэтому, чтобы не тормозить процесс передачи видеопотока, технологию CCD практически не применяют;
  • Live-MOS. Разработка компании Panasonic. Применяется для трансляций «живого» изображения за счет технологии, которая позволяет упрощенно организовать передачу сигналов управления и преобразование света в электрические импульсы. Для технологии характерно меньшее напряжение электропитания, перегрев и уровень шумовых помех;
  • CMOS (КМОП). Главное достоинство — более низкое энергопотребление. Ячейки в сенсоре считываются в произвольном порядке, что позволяет избежать размытия изображения при съемке движущихся объектов. Камерой с типом матрицы CMOS гораздо проще управлять, поскольку большая часть электроники расположена на ячейке. Однако такая конструкция сенсора уменьшает светочувствительную площадь.

Для современного видеонаблюдения в соотношении быстродействия, энергопотребления и цены КМОП матрицы предпочтительнее. Поэтому крупнейшие производители камер сосредоточились на закупке или производстве собственных CMOS сенсоров. Например, компании Hikvision и Dahua разрабатывают собственные светочувствительные элементы, которые использует при производстве оборудования. В топовых видеокамерах Dahua DH-SD50430I-HC-S2 или HIKVISION DS-2CD2942F используются именно КМОП матрицы.

DH-SD50430I-HC-S2
DH-SD50430I-HC-S2

Видеокамера HDCVI Скоростная купольная поворотная 4Мп разрешения

DS-2CD2942F
DS-2CD2942F

Панорамная купольная камера Fish Eye с высоким разрешением до 4Мп

ПЗС или КМОП матрица? DS-2CD2942F

Размеры матриц видеокамер наблюдения

Физические размеры матриц выражаются условной длиной, приведенной к диагонали видикона.

Видикон — родоначальник современной фото- и видеотехники. Его диаметр равнялся 1 условному дюйму при рабочей диагонали 16 мм. «Видиконовый дюйм» принят стандартом для определения типоразмера матрицы. Таким образом, если указано, что сенсор имеет размер 1/2”, это значит, что его диагональ равна 8 мм.

Современные видеокамеры чаще всего используют следующие типоразмеры: 1/2”; 1/3”; 1/4”; 1/6” и реже 1/10”.

На что влияет размер матрицы в камере?
От диагонали сенсора напрямую зависит качество изображения. Чем больше размер матрицы, тем крупнее у нее пиксели, следовательно, они улавливают большее количество света и расположены менее густо. Это позволяет уменьшить уровень помех, наводок и паразитных шумов. Кроме того, крупные сенсоры дают большие углы обзора для оптики с одинаковым фокусным расстоянием.

Какой размер матрицы лучше для видеокамеры

Это зависит от конкретных задач, стоящих перед видеонаблюдением. Важно помнить, что при выборе устройства характеристики нужно рассматривать комплексно. Например, хорошее разрешение при маленьком размере сенсора дадут плохое изображение. Кроме того, чем больше матрица, тем она дороже. Поэтому при выборе видеокамеры необходимо рассматривать вариант, в котором будут учитываться оптимальное соотношение трех показателей, удовлетворяющих потребности видеонаблюдения — это цена, разрешение и типоразмер.

Матрица фотоаппарата — ее устройство, характеристики, рекомендации по выбору

Матрица фотоаппарата – один из основных компонентов современной фототехники. На ее поверхности строится изображение, которое фиксируется чувствительными элементами (их называют пикселями). Существует множество эффективных алгоритмов дальнейшей обработки сигнала, но именно матрица стоит в самом начале электронного тракта фотокамеры и в наибольшей степени влияет на качество фотоснимка.

До появления матрицы использовалась пленка. Принципиально устройство фотоаппарата с тех пор изменилось мало. Изображение, как и раньше, строится объективами разных типов на светочувствительной поверхности, а далее посредством различных технологических процессов переносится либо на бумагу, либо на дисплей компьютера. Но  матрица имеет перед пленкой одно существенное преимущество – мгновенное получение результата. Именно это главным образом и определило повсеместное применение матриц в качестве фотосенсоров.

Устройство и типы матриц

Современная матрица — это микросхема, поверхность которой состоит из множества чувствительных к свету элементов. Каждый элемент является самостоятельным светоприемником, преобразующим падающий на него свет в электрический сигнал, который после предварительной обработки записывается на карту памяти. Изображение, которое мы видим, состоит из совокупности записанных в цифровом виде сигналов с каждого элемента, а значит, имеет дискретную структуру.

Существует две технологии преобразования света в сигнал, на которых может работать матрица фотоаппарата. Первая основана на свойстве полупроводниковых диодов накапливать электрический заряд под воздействием света, и носит название ПЗС (прибор с зарядовой связью) или CCD (то же самое по-английски). Вторая технология также использует накопление заряда, но в качестве приемника применяется не диод, а транзистор, что позволяет организовать усиление сигнала непосредственно в самом светочувствительном элементе. Эта технология называется КМОП (расшифровка мало что скажет неспециалисту, приводить ее не буду) или CMOS по-английски. Соответственно существуют и два типа матриц – ПЗС и КМОП.

Первая матрица работала по технологии ПЗС, поскольку эта технология проще и была внедрена первой. Сейчас более перспективным считается принцип КМОП, поскольку предварительное усиление сигнала непосредственно в элементе матрицы позволяет повысить чувствительность, снизить шумы, сократить энергопотребление и уменьшить стоимость матрицы. Несмотря на это, ПЗС матрицы все еще продолжают использоваться и сегодня.

Элементы, из которых состоит матрица фотоаппарата, способны фиксировать только интенсивность падающего на них света. Для того, чтобы записать цвет, необходимо, как минимум, три таких элемента (такое количество связано с особенностями восприятия цвета человеческим глазом, имеющим три вида колбочек), каждый из которых отвечает за свою область спектра. Чтобы реализовать цветовую чувствительность, перед каждым элементом ставится светофильтр, который пропускает только вполне определенный цвет – красный, зеленый или синий (модель RGB – Red-Green-Blue – которая используется в подавляющем большинстве матриц).

Таким образом, получается, что матрица состоит из набора трех видов сенсоров, при этом располагаться они могут разными способами – четырехугольником, у некоторых матриц шестиугольником, да и количество элементов разного цвета может быть разным. Например, в широко распространенном фильтре Байера на каждый красный и голубой элемент приходится два зеленых, при этом они еще и распределены случайным образом. Это сделано, чтобы смоделировать повышенную цветовую чувствительность человеческого глаза к зеленому цвету.

А что же тогда такое всем известный пиксель? Это легко понять, если представить себе, что фотоаппарат работает так же, как глаз. Изображение строится зрачком (объектив), воспринимается сетчаткой с палочками и колбочками (матрица) и обрабатывается мозгом (процессор). Собственно саму картинку мы видим мозгом, ведь структура сетчатки так же дискретна, как и матрица фотоаппарата.

Так вот пиксель – это логическая структура, формирующаяся в результате обработки сигнала процессором фотоаппарата по специальным алгоритмам. Пиксель может состоять и из одного светочувствительного элемента, и из трех и более. Например, в уже знакомом нам фильтре Байера цвет каждого элемента вычисляется по информации, полученной от окружающих его элементов, а следовательно, пиксель состоит из одного светочувствительного элемента. У разных матриц и алгоритмов это может быть по-разному.

По большому счету, нам все сказанное не так важно. На технологическом поле бьются производители фототехники, выпуская все более совершенные матрицы и постоянно улучшая алгоритмы обработки изображений. Что действительно нужно понимать, так это то, что для нас как пользователей, матрица состоит из пикселей, каждый из которых является элементом изображения, несущим информацию об интенсивности света и его цвете. А алгоритм обработки мы вообще вряд ли узнаем, поскольку свои ноу-хау производители берегут как зеницу ока.

Мы рассмотрели, как устроена матрица фотоаппарата, а теперь перейдем к ее основным характеристикам, понимание смысла которых поможет вам правильно выбрать хороший фотоаппарат.

Размер матрицы

Самая важная характеристика. И вот почему. Любой приемник излучения обладает шумами, т. е. на полезный сигнал всегда накладывается паразитный шум. Матрица не является исключением. Из теории известно, что чем больше света поступает в приемник излучения, тем меньше относительное влияние шума. Отсюда следует очевидный вывод: чем больше площадь чувствительного элемента, тем больше на него падает света, тем меньше шум.

Таким образом, чтобы матрица меньше шумела, она должна иметь больше размер и меньше пикселей. В этом случае можно будет снимать с большей чувствительностью ISO, с длинными выдержками, в темное время суток, ночью и т. д. и получать при этом фотографии высокого качества. Рассмотрим, какие размеры имеют современные матрицы.

Исторически сложилось так, что вместо того, чтобы просто указать размеры, например в миллиметрах, для обозначения размеров матриц используются малопонятные  и запутанные величины типа 1/2,7”. Это длина диагонали матрицы в долях дюйма (надо же такое придумать!). Тем не менее, такое обозначение указывается наиболее часто, и есть мнение, что это делается специально, чтобы запутать потребителя, поскольку производители не очень любят афишировать размер матрицы. С размером тесно связано понятие кроп фактора – отношения диагонали полного кадра к диагонали матрицы, который также не вполне очевиден, но часто указывается в характеристиках фотоаппарата.

Самая большая матрица из доступных (среднеформатные мы здесь рассматривать не будем из-за их очень высокой стоимости) имеет размер полного кадра 24х36 мм (кадр малоформатной пленочной камеры). Такая матрица применяется в полнокадровых зеркалках и дорогих беззеркальных фотоаппаратах. Отличается высокой чувствительностью, малыми шумами и отличным качеством изображения.

Все остальные матрицы меньше. Самые маленькие используются в компактных любительских мыльницах, они же имеют и самые низкие характеристики. Зато и цена таких фотоаппаратов весьма доступна. Рекомендация здесь одна: покупайте фотоаппарат с большей матрицей.

Разрешение матрицы

Вторая важная характеристика. Отвечает за детализацию изображения. Измеряется в миллионах пикселей – мегапикселях (МПикс.). Чем больше разрешение, тем большего формата фотографию можно напечатать и больше увеличить изображение на мониторе. Иными словами, тем большее количество информации несет цифровой снимок.

К сожалению, эта характеристика сильно пострадала в маркетинговых войнах производителей фототехники. Когда цифровая фотография только начиналась, разрешение действительно было главным параметром матрицы. Тогда матрица фотоаппарата мыльницы имела разрешение 3 – 4 МПикс., а у профессиональных зеркалок около 6. Этого мало, поскольку с 6 МПикс. можно напечатать фотографию размером не более А4, а ведь это профессиональная камера!

Но потом началась гонка мегапикселей, которая привела к тому, что качество изображения недорогой мыльницы с 16 МПикс. стало хуже, чем у зеркалки с 10 МПикс. Маленькая матрица 1/2,7” просто не в состоянии обеспечить приемлемый световой поток для 16 МПикс. втиснутых в 5,27х3,96 мм. Снимок получается шумным, шумоподавляющие алгоритмы замыливают картинку, четкость падает. В общем, беда. А ведь с 16 МПикс можно было бы легко напечатать фотографию 40х30 см и даже больше (!). Правда, в случае матрицы большего размера (например, формата APS-C размером 25,1×16,7 мм) , а не с той, о которой я говорю.

Вы сами должны решить, фотографии какого формата будете печатать или рассматривать на мониторе. А рекомендация здесь состоит в том, что предпочтительнее выбрать матрицу с меньшим разрешением, но с большим размером, она точно будет работать лучше. Например, для матриц упомянутого выше формата APS-C оптимальным можно считать разрешение 12 – 16 МПикс. А часто ли вы печатаете фотографии формата А3?

Светочувствительность матрицы

Эта характеристика определяет возможность матрицы регистрировать слабые световые потоки, т. е. снимать в темноте или с короткими выдержками. Определяется в единицах международного стандарта ISO. Как мы уже говорили выше, чем больше чувствительность, тем больше шумов. Матрица фотоаппарата типа КМОП шумит меньше, чем ПЗС. Большая по размерам меньше, чем маленькая. С меньшим разрешением меньше чем с большим.

Обычно фотоаппарат настроен по умолчанию на чувствительность 100 ISO. Качественные крупные матрицы на 200 ISO. Рекомендую снимать с как можно меньшей чувствительностью. Повышение чувствительности приводит к шумам и оправданно только тогда, когда по-другому снять кадр вообще невозможно, например, ночью без штатива или быстродвижущийся объект в условиях недостаточной освещенности. Во всех остальных случаях устанавливайте чувствительность как можно меньше.

Соотношение сигнал/шум матрицы

Этот параметр как раз и отражает шумность матрицы. Практически мы уже рассмотрели, как матрица фотоаппарата создает шумы и от чего они зависят. Добавлю лишь то, что кроме типа, размера, чувствительности, шум зависит еще и от температуры матрицы, чем она выше, тем шум больше. А при интенсивной работе матрица нагревается. В беззеркальных фотоаппаратах матрица работает постоянно, а в зеркалках только в момент срабатывания затвора, поэтому при прочих равных условиях матрицы даже любительских зеркальных фотоаппаратов шумят меньше.

Борьба с шумом это отдельная тема. Развитие цифровой техники идет очень быстрыми темпами и с каждым годом матрицы становятся все более совершенными. Шум можно значительно уменьшить при обработке снимков в фоторедакторах, но помните, что даже великий Photoshop не всемогущ, поэтому старайтесь придерживаться рекомендаций, которые давались выше.

На этом рассмотрение матриц можно завершить. Надеюсь, что современная матрица, пришедшая на смену пленке, не разочарует вас, поэтому снимайте, экспериментируйте и учитесь! И не экономьте на матрице, хотя эта рекомендация уже из другой области.

ПЗС-матрица — Википедия

Ccd.jpg

ПЗС-ма́трица (сокр. от «прибор с зарядовой связью»), или CCD-ма́трица (сокр. от англ. CCD, «charge-coupled device») — специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью.

ПЗС-матрицы выпускаются и активно используются компаниями Nikon, Canon, Sony, Fujitsu, Kodak, Matsushita, Philips и многими другими. В России ПЗС-матрицы сегодня разрабатывают и выпускают: ОАО «ЦНИИ „Электрон“» (г. Санкт-Петербург) и его дочернее предприятие АО «НПП „Элар“» (г. Санкт-Петербург,) а также ОАО «НПП „Пульсар“» (г. Москва).

Основная статья: ПЗС

Прибор с зарядовой связью был изобретён в 1969 году Уиллардом Бойлом и Джорджем Смитом в Лабораториях Белла (AT&T Bell Labs). Лаборатории работали над видеотелефонией и развитием «полупроводниковой пузырьковой памяти». Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

В 1970 году исследователи Bell Labs научились снимать изображения с помощью простых линейных устройств.

Впоследствии под руководством Кадзуо Ивамы компания Sony стала активно заниматься ПЗС, вложив в это крупные средства, и сумела наладить массовое производство ПЗС для своих видеокамер.

Ивама умер в августе 1982 года. Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.

В январе 2006 года за работы над ПЗС У. Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США[1].

В 2009 году эти создатели ПЗС-матрицы были награждены Нобелевской премией по физике.

ПЗС-матрица состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремниевые затворы изменяются электрические потенциалы вблизи электродов.

До экспонирования – обычно, подачей определённой комбинации напряжений на электроды – происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.

Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции, тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя.

После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.

Пример субпикселя ПЗС-матрицы с карманом n-типа[править | править код]

Архитектура пикселей у производителей разная.

Ccd.jpg Схема субпикселей ПЗС-матрицы с карманом n-типа (на примере красного фотодетектора)

Обозначения на схеме субпикселя ПЗС:

  1. фотоны света, прошедшие через объектив фотоаппарата;
  2. микролинза субпикселя;
  3. R — красный светофильтр субпикселя, фрагмент фильтра Байера;
  4. прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова;
  5. оксид кремния;
  6. кремниевый канал n-типа: зона генерации носителей — зона внутреннего фотоэффекта;
  7. зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда;
  8. кремниевая подложка p-типа.

Классификация по способу буферизации[править | править код]

Матрицы с полнокадровым переносом[править | править код]

Сформированное объективом изображение попадает на ПЗС-матрицу, то есть лучи света падают на светочувствительную поверхность ПЗС-элементов, задача которых — преобразовать энергию фотонов в электрический заряд. Происходит это примерно следующим образом.

Для фотона, упавшего на ПЗС-элемент, есть три варианта развития событий — он либо «срикошетит» от поверхности, либо будет поглощён в толще полупроводника (материала матрицы), либо «пробьёт насквозь» её «рабочую зону». Очевидно, что от разработчиков требуется создать такой сенсор, в котором потери от «рикошета» и «прострела навылет» были бы минимизированы. Те же фотоны, которые были поглощены матрицей, образуют пару электрон-дырка, если произошло взаимодействие с атомом кристаллической решётки полупроводника, или же только электрон (либо дырку), если взаимодействие было с атомами донорных либо акцепторных примесей, а оба перечисленных явления называются внутренним фотоэффектом. Разумеется, внутренним фотоэффектом работа сенсора не ограничивается — необходимо сохранить «отнятые» у полупроводника носители заряда в специальном хранилище, а затем их считать.

Элемент ПЗС-матрицы[править | править код]

В общем виде конструкция ПЗС-элемента выглядит так: кремниевая подложка p-типа оснащается каналами из полупроводника n-типа. Над каналами создаются электроды из поликристаллического кремния с изолирующей прослойкой из оксида кремния. После подачи на такой электрод электрического потенциала, в обеднённой зоне под каналом n-типа создаётся потенциальная яма, назначение которой — хранить электроны. Фотон, проникающий в кремний, приводит к генерации электрона, который притягивается потенциальной ямой и остаётся в ней. Большее количество фотонов (яркий свет) обеспечивает больший заряд ямы. Затем надо считать значение этого заряда, именуемого также фототоком, и усилить его.

Считывание фототоков ПЗС-элементов осуществляется так называемыми последовательными регистрами сдвига, которые преобразовывают строку зарядов на входе в серию импульсов на выходе. Данная серия представляет собой аналоговый сигнал, который в дальнейшем поступает на усилитель.

Таким образом, при помощи регистра можно преобразовать в аналоговый сигнал заряды строки из ПЗС-элементов. Фактически, последовательный регистр сдвига в ПЗС-матрицах реализуется с помощью тех же самых ПЗС-элементов, объединённых в строку. Работа такого устройства базируется на способности приборов с зарядовой связью (именно это обозначает аббревиатура ПЗС) обмениваться зарядами своих потенциальных ям. Обмен осуществляется благодаря наличию специальных электродов переноса (transfer gate), расположенных между соседними ПЗС-элементами. При подаче на ближайший электрод повышенного потенциала заряд «перетекает» под него из потенциальной ямы. Между ПЗС-элементами могут располагаться от двух до четырёх электродов переноса, от их количества зависит «фазность» регистра сдвига, который может называться двухфазным, трёхфазным либо четырёхфазным.

Подача потенциалов на электроды переноса синхронизирована таким образом, что перемещение зарядов потенциальных ям всех ПЗС-элементов регистра происходит одновременно. И за один цикл переноса ПЗС-элементы как бы «передают по цепочке» заряды слева направо (или же справа налево). Ну а оказавшийся «крайним» ПЗС-элемент отдаёт свой заряд устройству, расположенному на выходе регистра — то есть усилителю.

В целом, последовательный регистр сдвига является устройством с параллельным входом и последовательным выходом. Поэтому после считывания всех зарядов из регистра есть возможность подать на его вход новую строку, затем следующую и таким образом сформировать непрерывный аналоговый сигнал на основе двумерного массива фототоков. В свою очередь, входной параллельный поток для последовательного регистра сдвига (то есть строки двумерного массива фототоков) обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, которая именуется параллельным регистром сдвига, а вся конструкция в целом как раз и является устройством, именуемым ПЗС-матрицей.

«Вертикальные» последовательные регистры сдвига, составляющие параллельный, называются столбцами ПЗС-матрицы, а их работа полностью синхронизирована. Двумерный массив фототоков ПЗС-матрицы одновременно смещается вниз на одну строку, причём происходит это только после того, как заряды предыдущей строки из расположенного «в самом низу» последовательного регистра сдвига ушли на усилитель. До освобождения последовательного регистра параллельный вынужден простаивать. Ну а сама ПЗС-матрица для нормальной работы обязательно должна быть подключена к микросхеме (или их набору), подающей потенциалы на электроды как последовательного, так и параллельного регистров сдвига, а также синхронизирующей работу обоих регистров. Кроме того, нужен тактовый генератор.

Полнокадровая матрица[править | править код]

Данный тип сенсора является наиболее простым с конструктивной точки зрения и именуется полнокадровой ПЗС-матрицей (full-frame CCD-matrix). Помимо микросхем «обвязки», такой тип матриц нуждается также в механическом затворе, перекрывающем световой поток после окончания экспонирования. До полного закрытия затвора считывание зарядов начинать нельзя — при рабочем цикле параллельного регистра сдвига к фототоку каждого из его пикселов добавляются лишние электроны, вызванные попаданием фотонов на открытую поверхность ПЗС-матрицы. Данное явление называется «размазыванием» заряда в полнокадровой матрице (full-frame matrix smear).

Таким образом, скорость считывания кадра в такой схеме ограничена скоростью работы как параллельного, так и последовательного регистров сдвига. Также очевидно, что необходимо перекрывать световой поток, идущий с объектива, до завершения процесса считывания, поэтому интервал между экспонированием тоже зависит от скорости считывания.

Матрицы с буферизацией кадра[править | править код]

Существует усовершенствованный вариант полнокадровой матрицы, в котором заряды параллельного регистра не поступают построчно на вход последовательного, а «складируются» в буферном параллельном регистре. Данный регистр расположен под основным параллельным регистром сдвига, фототоки построчно перемещаются в буферный регистр и уже из него поступают на вход последовательного регистра сдвига. Поверхность буферного регистра покрыта непрозрачной (чаще металлической) панелью, а вся система получила название матрицы с буферизацией кадра (frame—transfer CCD).

В данной схеме потенциальные ямы основного параллельного регистра сдвига «опорожняются» заметно быстрее, так как при переносе строк в буфер нет необходимости для каждой строки ожидать полный цикл последовательного регистра. Поэтому интервал между экспонированием сокращается, правда при этом также падает скорость считывания — строке приходится «путешествовать» на вдвое большее расстояние. Таким образом, интервал между экспонированием сокращается только для двух кадров, хотя стоимость устройства за счёт буферного регистра заметно возрастает. Однако наиболее заметным недостатком матриц с буферизацией кадра является удлинившийся «маршрут» фототоков, который негативно сказывается на сохранности их величин. И в любом случае между кадрами должен срабатывать механический затвор, так что о непрерывном видеосигнале говорить не приходится.

Матрицы с буферизацией столбцов[править | править код]

Специально для видеотехники был разработан новый тип матриц, в котором интервал между экспонированием был минимизирован не для пары кадров, а для непрерывного потока. Разумеется, для обеспечения этой непрерывности пришлось предусмотреть отказ от механического затвора.

Фактически данная схема, получившая наименование матрицы с буферизацией столбцов (interline CCD matrix), в чём-то сходна с системами с буферизацией кадра — в ней также используется буферный параллельный регистр сдвига, ПЗС-элементы которого скрыты под непрозрачным покрытием. Однако буфер этот не располагается единым блоком под основным параллельным регистром — его столбцы «перетасованы» между столбцами основного регистра. В результате рядом с каждым столбцом основного регистра находится столбец буфера, а сразу же после экспонирования фототоки перемещаются не «сверху вниз», а «слева направо» (или «справа налево») и всего за один рабочий цикл попадают в буферный регистр, целиком и полностью освобождая потенциальные ямы для следующего экспонирования.

Попавшие в буферный регистр заряды в обычном порядке считываются через последовательный регистр сдвига, то есть «сверху вниз». Поскольку сброс фототоков в буферный регистр происходит всего за один цикл, даже при отсутствии механического затвора не наблюдается ничего похожего на «размазывание» заряда в полнокадровой матрице. А вот время экспонирования для каждого кадра в большинстве случаев по продолжительности соответствует интервалу, затрачиваемому на полное считывание буферного параллельного регистра. Благодаря всему этому появляется возможность создать видеосигнал с высокой частотой кадров — не менее 30 кадров секунду.

Зачастую в отечественной литературе матрицы с буферизацией столбцов ошибочно именуют «чересстрочными». Вызвано это, наверное, тем, что английские наименования «interline» (буферизация строк) и «interlaced» (чересстрочная развёртка) звучат очень похоже. На деле же при считывании за один такт всех строк можно говорить о матрице с прогрессивной развёрткой (progressive scan), а когда за первый такт считываются нечётные строки, а за второй — чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan).

Матрицы с ортогональным переносом изображения[править | править код]

В этих матрицах заряды могут перемещаться в соседние ячейки по команде системы управления. Применяются в космических телескопах для компенсации турбулентности атмосферы, вибрации механизма телескопа и других механических и оптических помех.[2]

Ccd.jpg Схема для визуального сравнения размеров матриц с различным Kf{\displaystyle K_{f}}
Обозначение Kf{\displaystyle K_{f}} Ширина

(мм)

Высота

(мм)

Диагональ

(мм)

Площадь

(мм²)

Пример

камеры

Полнокадровые,
плёнка типа 135.
1 — 1,01 35,8 — 36 23,8 — 24 43 — 43,3 852—864 Canon EOS 5D, Canon EOS-1Ds (КМОП-матрица)
APS-H 1,26 — 1,28 28,1 — 28,7 18,7 — 19,1 33,8 — 34,5 525,5 — 548,2 Canon EOS-1D Mark III (КМОП-матрица)
1,33 27 18 32,4 486 Leica M8
APS-C, DX, 1.8″[3] 1,44 — 1,74 20,7 — 25,1 13,8 — 16,7 24,9 — 30,1 285,7 — 419,2 Pentax K10D
Foveon X3 1,74 20,7 13,8 24,9 285,7 Sigma SD14
4/3″ 1,92 — 2 17,3 — 18 13 −13,5 21,6 — 22,5 224,9 — 243 Olympus E-330
1″ 2,7 12,8 9,6 16 122,9 Sony ProMavica MVC-5000
2/3″ 3,93 8,8 6,6 11 58,1 Pentax EI-2000
1/1,6″ ≈4 8 6 10 48 Panasonic Lumix DMC-LX3
1/1,65″ ≈4 Panasonic Lumix DMC-LX2
1/1,7″ ≈4,5 7,6 5,7 9,5 43,3 Canon PowerShot G10
1/1,8″ 4,84 7,176 5,319 8,9 38,2 Casio EXILIM EX-F1
1/1,9″ ≈5 Samsung Digimax V6
1/2″ 5,41 6,4 4,8 8 30,7 Sony DSC-D700
1/2,3″ 5,6 6,16 4,62 7,70 28,46 Olympus SP-560 UZ
1/2,35″ ≈6 Pentax Optio V10
1/2,4″ ≈6 Fujifilm FinePix S8000fd
1/2,5″ 5,99 5,8 4,3 7,2 24,9 Panasonic Lumix DMC-FZ8
1/2,6″ ≈6 HP Photosmart M447
1/2,7″ 6,56 5,27 3,96 6,6 20,9 Olympus C-900 zoom
1/2,8″ ≈7 Canon DC40
1/2,9″ ≈7 Sony HDR-SR7E
1/3″ 7,21 4,8 3,6 6 17,3 Canon PowerShot A460
1/3,1″ ≈7 Sony HDR-SR12E
1/3,2″ 7,62 4,536 3,416 5,7 15,5 Canon HF100
1/3,4″ ≈8 Canon MVX35i
1/3,6″ 8,65 4 3 5 12 JVC GR-DZ7
1/3,9″ ≈9 Canon DC22
1/4″ Canon XM2
1/4,5″ Samsung VP-HMX10C
1/4,7″ Panasonic NV-GS500EE-S
1/5″ Sony DCR-SR80E
1/5,5″ JVC Everio GZ-HD7
1/6″ 14,71 2,4 1,7 2,9 4,1 Sony DCR-DVD308E
1/8″ Sony DCR-SR45E
Обозначение соответствие
формату
киноплёнки
Ширина

(мм)

Высота

(мм)

Диагональ

(мм)

Площадь

(мм²)

Пример

камеры

Super-35 Super-35 24,89 18,66 31 465 Arri D-21, Red One
65-mm широкоформатная 49 23 54 1127 Sony F65, Phantom 65

Светочувствительные линейки[править | править код]

Основная сфера применения линейных световоспринимающих устройств — сканеры, панорамная фотоаппаратура, а также спектроанализаторы и другое научно-исследовательское оборудование.

Координатные и угловые датчики[править | править код]

Матрицы с обратной засветкой[править | править код]

В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, светочувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной светочувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (англ. back-illuminated matrix). В сенсорах такого типа регистрируемый свет падает на подложку, но для требуемого внутреннего фотоэффекта подложка шлифуется до толщины 10—15 мкм. Данная стадия обработки существенно увеличивала стоимость матрицы, устройства получались весьма хрупкими и требовали повышенной осторожности при сборке и эксплуатации. А при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл. Поэтому матрицы с обратной засветкой применяются в основном в астрономической фотографии.

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков (сенселей) и в целом зависит от:

  • интегральной светочувствительности, представляющей собой отношение величины фотоэффекта к световому потоку (в люменах) от источника излучения нормированного спектрального состава;
  • монохроматической светочувствительности — отношения величины фотоэффекта к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны;
  • набор всех значений монохроматической светочувствительности для выбранной части спектра света составляет спектральную светочувствительность — зависимость светочувствительности от длины волны света;

Для увеличения светочувствительности и соотношения сигнал/шум применяется метод группировки соседних сенселей (англ. binning). Принцип работы метода заключается в аппаратном суммировании сигналов от группы соседних сенселей. Например, четыре соседних сенселя, образующих квадрат, объединятся в один. При этом уменьшается разрешение матрицы (в данном примере в четыре раза). Подобные режимы используются в космической и микроскопической съёмке.

  • Ю.Р. Носов, В.А. Шилин. Основы физики приборов с зарядовой связью. — М.: Наука, 1986. — 318 с.
  • пер. с англ. / Под ред. М. Хоувза, Д. Моргана. Приборы с зарядовой связью. — М.: Энергоиздат, 1981. — 372 с.
  • Секен К., Томпсет М. Приборы с переносом заряда/ Пер. с англ. Под ред. В.В. Поспелова, Р.А. Суриса.. — М.: Мир, 1978. — 327 с.
  • под ред. П. Йесперса, Ф. Ван де Виле, М. Уайта ; пер. с англ. под ред. Р. А. Суриса. Полупроводниковые формирователи сигналов изображения. — М.: Мир, 1979. — 573 с.

Как работает цифровой фотоаппарат

© 2014 Vasili-photo.com

Для полного контроля над процессом получения цифрового изображения необходимо хотя бы в общих чертах представлять себе устройство и принцип работы цифрового фотоаппарата.

Единственное принципиальное отличие цифровой камеры от плёночной заключается в природе используемого в них светочувствительного материала. Если в плёночной камере это плёнка, то в цифровой – светочувствительная матрица. И как традиционный фотографический процесс неотделим от свойств плёнки, так и цифровой фотопроцесс во многом зависит от того, как матрица преобразует свет, сфокусированный на неё объективом, в цифровой код.

Принцип работы фотоматрицы

Светочувствительная матрица или фотосенсор представляет собой интегральную микросхему (проще говоря, кремниевую пластину), состоящую из мельчайших светочувствительных элементов – фотодиодов.

Матрица фотоаппарата Nikon D4
Матрица фотоаппарата Nikon D4

Существует два основных типа сенсоров: ПЗС (Прибор с Зарядовой Связью, он же CCD – Charge-Coupled Device) и КМОП (Комплементарный Металл-Оксид-Полупроводник, он же CMOS – Complementary Metal-Oxide-Semiconductor). Матрицы обоих типов преобразовывают энергию фотонов в электрический сигнал, который затем подлежит оцифровке, однако если в случае с ПЗС матрицей сигнал, сгенерированный фотодиодами, поступает в процессор камеры в аналоговой форме и лишь затем централизованно оцифровывается, то у КМОП матрицы каждый фотодиод снабжён индивидуальным аналого-цифровым преобразователем (АЦП), и данные поступают в процессор уже в дискретном виде. В целом, различия между КМОП и ПЗС матрицами хоть и принципиальны для инженера, но абсолютно несущественны для фотографа. Для производителей же фотооборудования имеет значение ещё и тот факт, что КМОП матрицы, будучи сложнее и дороже ПЗС матриц в разработке, оказываются при этом выгоднее последних при массовом производстве. Так что будущее, скорее всего, за технологией КМОП в силу чисто экономических причин.

Фотодиоды, из которых состоит любая матрица, обладают способностью преобразовывать энергию светового потока в электрический заряд. Чем больше фотонов улавливает фотодиод, тем больше электронов получается на выходе. Очевидно, что чем больше совокупная площадь всех фотодиодов, тем больше света они могут воспринять и тем выше светочувствительность матрицы.

К сожалению, фотодиоды не могут быть расположены вплотную друг к другу, поскольку тогда на матрице не осталось бы места для сопутствующей фотодиодам электроники (что особенно актуально для КМОП матриц). Восприимчивая к свету поверхность сенсора составляет в среднем 25-50 % от его общей площади. Для уменьшения потерь света каждый фотодиод накрыт микролинзой, превосходящей его по площади и фактически соприкасающейся с микролинзами соседних фотодиодов. Микролинзы собирают падающий на них свет и направляют его внутрь фотодиодов, повышая таким образом светочувствительность сенсора.

Основа любой фотографии – свет. Он проникает в камеру через объектив, линзы которого формируют изображение предмета на светочувствительной матрице. При нажатии на кнопку спуска затвор камеры открывается (как правило, на доли секунды) и происходит экспонирование кадра, т.е. освещение матрицы потоком света заданной интенсивности. В зависимости от желания получить светлый или тёмный снимок, может потребоваться различное количество света, т.е. различная экспозиция.

По завершении экспонирования электрический заряд, сгенерированный каждым фотодиодом, считывается, усиливается и с помощью аналого-цифрового преобразователя превращается в двоичный код заданной разрядности, который затем поступает в процессор фотоаппарата для последующей обработки. Каждому фотодиоду матрицы соответствует (хоть и не всегда) один пиксель будущего изображения.

Разрядность определяет количество оттенков, т.е. градаций яркости для каждого пикселя. Чем выше разрядность, тем более плавные тональные переходы способна запечатлеть камера. Большинство цифровых зеркальных камер способно сохранять 12 или 14 бит информации для каждого пикселя. 12 бит означает 212=4096 оттенков, а 14 бит – 214=16384 оттенка.

Динамический диапазон

Под динамическим диапазоном матрицы подразумевают отношение между максимальным уровнем сигнала фотодиодов и уровнем фонового шума матрицы, т.е., по сути, – отношение между максимальной и минимальной интенсивностью света, которые матрица способна воспринять.

Чем больше фотонов способен уловить фотодиод до того, как он достигнет насыщения, тем большим динамическим диапазоном будет обладать сенсор в целом. Ёмкость фотодиодов пропорциональна их физическому размеру, а потому, при прочих равных условиях, фотоаппарат с бо́льшей матрицей, а значит, и с более крупными фотодиодами, будет обладать большим динамическим диапазоном и меньшим уровнем шума.

Кроме того, бо́льшая матрица обычно означает более высокое максимальное значение чувствительности ISO для конкретной модели фотоаппарата. Ведь повышение ISO в цифровой камере – это всего лишь усиление электрического сигнала непосредственно перед его оцифровкой. Естественно, что вместе с полезным сигналом усиливается и шум, а значит, матрица с большим отношением сигнал/шум обеспечивает более чистую картинку при высоких значениях ISO.

Формирование цветного изображения

Возможно, некоторые из читателей уже заметили, что матрица цифрового фотоаппарата в том виде, в каком она описана выше, способна воспринимать лишь чёрно-белое изображение. Совершенно верно. Фотодиод регистрирует лишь интенсивность освещения (по принципу один фотон – один электрон), но не имеет возможности определить цвет, зависящий от длины световой волны или, иначе говоря, от энергии конкретных фотонов.

Чтобы решить эту проблему, каждый из фотодиодов снабжается светофильтром красного, зелёного или синего цвета. Красный светофильтр пропускает лучи красного цвета, но задерживает синие и зелёные лучи. Аналогичным образом ведут себя зелёный и синий светофильтры, пропуская лучи только своего цвета. В результате каждый фотодиод становится восприимчив лишь к ограниченному спектру световых волн.

Фильтр Байера

Цветные светофильтры, покрывающие фотодиоды, образуют узор или мозаику, называемую массивом цветных фильтров. Существует множество вариантов взаимного расположения светофильтров, но в большинстве цифровых камер используется т.н. фильтр Байера, состоящий на 25 % из красных, на 25 % из синих и на 50 % из зелёных элементов. Вдвое большее количество зелёных светофильтров используется потому, что человеческий глаз обладает повышенной чувствительностью именно к световым лучам зелёного цвета, из-за чего неточность в передаче зелёного канала на фотографии особенно заметна.

Полученное с помощью массива цветных фильтров изображение не является в полной мере цветным, ведь каждый фотодиод сообщает процессору камеры информацию лишь об одном из основных цветов: красном, зелёном или синем. Недостающая цветовая информация для каждого пикселя восстанавливается в процессе дебайеризации. Процессор фотоаппарата анализирует данные из расположенных по соседству элементов и, используя хитроумные алгоритмы интерполяции, рассчитывает значения красного, зелёного и синего цвета для каждого пикселя, получая в конечном итоге полноцветное RGB изображение.

Печально, но платой за цвет является трёхкратное снижение чувствительности матрицы, поскольку, при использовании фильтра Байера, световой поток, достигающий каждого фотодиода, ослабляется светофильтром примерно втрое. Кроме того, страдает резкость изображения. Заявленное производителем разрешение матрицы отражает её, так сказать, чёрно-белое разрешение, в то время как цветное изображение формируется посредством интерполяции соседних пикселей, что несколько размывает картинку.

Также матрицы с массивом цветных фильтров ведут себя из рук вон плохо в условиях монохромного освещения. Например, при свете натриевых ламп низкого давления полноценно работают только красные фотодиоды. Зелёные получают минимум света, а синие и вовсе не воспринимают никакой информации. В результате фотография выходит довольно зернистой даже при умеренных значениях ISO, поскольку изображение приходится восстанавливать почти исключительно на основании красных пикселей, которых на матрице всего 25 %.

Существуют альтернативные подходы к получению цветного изображения вроде трёхматричных систем 3CCD или трёхслойных фотосенсоров Foveon X3, однако и они не лишены недостатков и по распространённости значительно уступают матрицам с фильтром Байера.

Предварительная фильтрация света

Поверх фильтра Байера и микролинз сенсор накрыт дополнительным фильтром, прозрачным для видимого света, но непроницаемым для инфракрасных лучей. Необходимость в ИК фильтре продиктована высокой чувствительностью матрицы не только к видимому, но также и к инфракрасному излучению. ИК фильтр отсекает световые лучи с длиной волны свыше 700 нм и приводит диапазон частот, воспринимаемых фотосенсором, в соответствие с чувствительностью человеческого глаза.

Для съёмки же в инфракрасном диапазоне выпускаются специальные камеры без ИК фильтра.

К ультрафиолетовому излучению (с длиной волны меньше 400 нм) сенсор цифрового фотоаппарата практически не восприимчив, и потому в специальном УФ фильтре не нуждается.

Помимо фильтра, задерживающего инфракрасное излучение, фотосенсор часто снабжается ещё и т.н. оптическим фильтром нижних частот или сглаживающим фильтром, задача которого состоит в лёгком размытии изображения. Дело в том, что если снимаемый объект имеет области с мелкими деталями, размер которых сопоставим с размерами фотодиодов матрицы, то при оцифровке изображения возможно появление неестественно выглядящих артефактов вроде муара. Фильтр нижних частот сглаживает мельчайшие детали изображения, т.е. снижает частоту исходного аналогового сигнала до уровня, не превышающего частоту дискретизации. Это позволяет уменьшить риск возникновения артефактов оцифровки ценой незначительного снижения резкости конечного снимка.

Чем выше разрешение цифрового фотоаппарата, тем меньше необходимость в сглаживающем фильтре, и потому в последнее время всё чаще выпускаются модели без оного. При разрешении матрицы свыше 15-20 мегапикселей аберрации объектива и дифракция на отверстии диафрагмы обеспечивают естественное и неизбежное размытие изображения, что делает намеренное ухудшение резкости с помощью фильтра нижних частот излишним.

***

Теперь вы знаете, как работает цифровая камера, и обладаете достаточным представлением об определённых технических слабостях цифровой фотографии на настоящем этапе её развития. Само собой разумеется, что сведения эти дополняют, но ни в коем случае не заменяют глубокое и всестороннее понимание экспозиции.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Желаю удачи!


  Дата публикации: 22.01.2014
Лицензия Creative Commons

Вернуться к разделу «Матчасть»

Перейти к полному списку статей


Матрица цифрового фотоаппарата. Принцип работы.

Продолжаю начатый в предыдущей публикации разговор об устройстве цифрового фотоаппарата.

Одним из главных элементов цифрового фотоаппарата, отличающих его от фотоаппаратов пленочных является светочувствительный элемент, так называемый ЭОП или светочувствительная матрица цифрового фотоаппарата. О матрицах фотоаппаратов уже говорилось ранее, теперь же рассмотрим несколько подробнее устройство и принцип работы матрицы, хотя и достаточно поверхностно, чтобы не слишком утомлять читателя.

В настоящее время большинство цифровых фотоаппаратов оснащены ПЗС-матрицами.

Рассмотрим в общих чертах устройство ПЗС- матрицы.

 

 

Полупроводники, как известно, делятся на полупроводники n-типа и p-типа. В полупроводнике n-типа имеется избыток свободных электронов, а в полупроводнике p-типа избыток положительных зарядов, «дырок» (а следовательно недостаток электронов). На взаимодействии таких двух типов полупроводников и основана вся микроэлектроника.

Так вот, элемент ПЗС-матрицы цифрового фотоаппарата устроен следующим образом. См. Рис.1:


Рис.1

Если не вдаваться в подробности, то ПЗС-элемент или прибор с зарядовой связью, в английской транскрипции: charge-coupled-device – CCD, представляет собой МДП (металл-диэлектрик-полупроводник) конденсатор. Он состоит из подложки p-типа — слоя кремния, изолятора из двуокиси кремния и пластин-электродов. При подаче на один из электродов положительного потенциала, под ним образуется зона обедненная основными носителями — дырками, т. к. они оттесняются электрическим полем от электрода вглубь подложки. Таким образом под данным электродом образуется потенциальная яма, т. е. энергетическая зона благоприятная для перемещения в нее неосновных носителей – электронов. В этой яме накапливается отрицательный заряд. Он может храниться в данной яме достаточно долго из-за отсутствия в ней дырок и, следовательно, причин для рекомбинации электронов.

В светочувствительных матрицах электродами являются пленки поликристаллического кремния, прозрачного в видимой области спектра.

Рис.2

Фотоны падающего на матрицу света попадают в кремниевую подложку, образуя в ней пару дырка-электрон. Дырки, как сказано выше смещаются вглубь подложки, а электроны накапливаются в потенциальной яме.

Накопившийся заряд пропорционален количеству фотонов падающих на элемент, т. е. интенсивности светового потока. Таким образом на матрице создается зарядовый рельеф, соответствующий оптическому изображению.

Далее используется  свойство ПЗС-элементов перемещать заряды под действием подаваемых тактовыми импульсами потенциалов на электроды смещения.

Перемещение зарядов в ПЗС-матрице.

В каждом ПЗС-элементе имеется несколько электродов, на которые подаются разные потенциалы.

Рис.3.

При подаче на соседний электрод (см. рис. 3) потенциала, большего, чем на данном электроде, под ним образуется более глубокая потенциальная яма, в которую перемещается заряд из первой потенциальной ямы. Таким образом заряд может перемещаться из одной ПЗС-ячейки в другую. Показанный на рис.3  ПЗС-элемент называется трехфазным, бывают еще и 4-х фазные элементы.

Рис.4. Схема работы трехфазного прибора с зарядовой связью – сдвигового регистра.

Для преобразования  зарядов в импульсы тока (фототока) используются последовательные регистры сдвига (см. рис.4). Такой регистр сдвига и является строкой ПЗС-элементов. Амплитуда импульсов тока пропорциональна величине передаваемого заряда, и пропорциональна,таким образом, падающему световому потоку.  Последовательность импульсов тока, образующихся при считывании последовательности зарядов, затем подается на вход усилителя.

Линейки близко расположенных друг к другу ПЗС-элементов  объединяются в ПЗС-матрицу. Работа такой матрицы  основывается на создании и передаче локального заряда в потенциальных ямах, создаваемых электрическим полем.

Рис.5.

 Заряды всех ПЗС-элементов регистра синхронно перемещаются в соседние ПЗС-элементы. Заряд, который находился в последней ячейке, поступает на выход из регистра, а затем подается на вход усилителя.

На вход последовательного регистра сдвига подаются заряды перпендикулярно расположенных регистров сдвига, которые в совокупности называются параллельным регистром сдвига. Параллельный и последовательный регистры сдвига и составляют ПЗС-матрицу (см. рис.4).

Перпендикулярные к последовательному регистру сдвиговые регистры носят название столбцов.

Перемещение зарядов параллельного регистра строго синхронизовано. Все заряды одной строки смещаются одновременно в соседнюю. Заряды последней строки попадают в последовательный регистр. Таким образом за один рабочий цикл строка зарядов из параллельного регистра попадает на вход последовательного, освобождая место для вновь образуемых зарядов.

Работа последовательного и параллельного регистров синхронизуется тактовым генератором. В состав матрицы цифрового фотоаппарата также входит микросхема, подающая потенциалы на электроды переноса регистров и управляющая их работой.

ЭОП такого типа носит название полнокадровой матрицы (full-frame CCD-matrix). Для его работы необходимо наличие светонепроницаемой крышки, которая сначала открывает ЭОП для экспонирования светом, затем, когда на него попало количество фотонов, необходимое для накопления достаточного заряда в элементах матрицы, закрывает его от света. Такая крышка является механическим затвором, как в пленочных фотоаппаратах. Отсутствие такого затвора приводит к тому, что при перемещении зарядов в сдвиговом регистре ячейки продолжают облучаться светом, добавляя к заряду каждого пиксела лишние электроны, не соответствующие световому потоку данной точки. Это приводит к «размазыванию» заряда, соответственно к искажению получаемого изображения.

Скорость работы такого ЭОПа зависит не только от скорости считывания как с параллельного , так и с последовательного регистров, но еще и наличием механического затвора, который влияет на длительность интервала между экспонированием отдельных кадров.

С целью уменьшения интервала между экспонированием отдельных кадров была разработана матрица с буферизацией кадра.

Здесь была рассмотрена физика восприятия света светочувствительным элементом ПЗС-матрицы, но ничего не говорится о цвете. В принципе ПЗС-элемент воспринимает все цвета почти одинаково (есть некоторая спектральная чувствительность, но об этом позже). Каким же образом с помощью Пзс-элементов создается цветное изображение рассматривается далее.

Предлагаю вам на десерт ролик с изумительной музыкой, в котором представлены армянский дудук и скрипка:

Поделиться в соц. сетях

Об авторе

Я живу в г Новосибирске. Образование высшее — НГТУ, физикотехнический факультет. В настоящее время на пенсии. Семья: жена, две дочери, две внучки. Работал в последнее время в электронной промышленности в ОКБ по разработке и производству приборов ночного видения. Люблю музыку- классику, джаз, оперу, балет. Главное увлечение — любительская фотография.

Размер матрицы видеокамеры: какая лучше подойдет вам?

Добрый день, дорогие читатели, сегодняшняя статья точно заинтересует любителей профессиональной и любительской видеосъемки, ведь речь в ней пойдет о самых важных составляющих цифровой видеокамеры. Если режиссер хочет справиться со своей задачей на 5+, отснять превосходный, качественный материал, то ему стоит узнать о важности микросхем для камеры, какой размер матрицы видеокамеры существует и на какой из них нужно остановить свой выбор.

Технологическая начинка видеокамеры

Когда меня спрашивают, на какие технические параметры и компоненты стоит обращать внимание при выборе видеокамеры, то я отвечаю, что для каждой камеры (аналоговой, цифровой, HD) существует единая стандартная база. Именно эти компоненты играют важнейшую роль в качестве съемки, работоспособности и мощности аппарата.

Думаю, вам тоже будет интересно узнать о них:

  • Объектив – составляющая видеокамеры, отвечающая за собирание и передачу визуализированной картинки на чувствительную к свету матрицу;
  • Матрица – компонент, преобразующий переданный объективом оптический луч в электрический импульс;
  • Обрабатывающий и передающий видеосигнал процессор, помогающий перемещать электрический импульс на различные устройства записывания и просмотра.

Конечно же, технологический прогресс развивается со скоростью света, поэтому функционал камер значительно расширился. Ответ на вопрос, из чего состоит цифровая видеокамера, не может быть однозначным, ведь различные бренды выпускают аппараты с различным набором компонентов.

obektivyobektivy

В расширенный компонентный набор может входить:

  • ИК-подсветка, отвечающая за качество получаемого изображения в темноте;
  • Поворотный механизм, позволяющий с легкостью управлять подвижными камерами;
  • Центральный процессор, в котором располагаются интеллектуальные модули, детекторы движения, происходит обработка и сжатие HD-качества;
  • Кратный зум – встречается двух видов, оптический и цифровой. Для любительской видеосъемки больше подходит оптический ZOOM. В данном случае оптика выполняет функцию приближения или удаления получаемого изображения без потери качества. Увеличение в цифровом зуме происходит уже после съемки путем обрезания материала;
  • Универсальный корпус, выполняющий функцию защиты от влаги, ударов и других внешних негативных факторов, способных нарушить функциональность устройства;
  • Фиксирующий, записывающий, передающий звуковые эффекты встроенный аудиомикрофон;
  • Модуль хранения материала на карте памяти, а также блокировка записи на носитель;
  • Датчики тревоги;
  • Сетевой интерфейс.

Благодаря этим составляющим каждый желающий может отснять высококачественное любительское кино, запечатлеть самые счастливые события, заснять красивые места и поделиться этим с окружающими. Ведь вряд ли существует в этом мире хоть один человек, который не хотел бы сделать памятное видео того либо иного события, не так ли?

okatili-vodoy-fotoapparatokatili-vodoy-fotoapparat

Назначение матрицы и ее разновидности

Если говорить о разновидностях и технологиях, то существует всего 2 матричных типа: CMOS и CCD. Конечно, у вас сразу возникает в голове вопрос, какая же технология лучше для любительской видеосъемки? И я вам отвечу, нет предела совершенству, каждой из них далеко до идеала, каждая обладает своими недостатками и достоинствами, о которых мы поговорим дальше.

Тип CMOS или КМОП

Отличительной чертой CMOS-матриц можно считать низкое энергопотребление, что является неоспоримым плюсом.

К особенностям данной технологии можно отнести:

  • Произвольное считывание ячеек, что позволяет получать высококачественное несмазанное изображение;
  • Отсутствие «вертикальных столбцов света», возникающих из-за яркости точечных объективов;
  • Доступность цены;
  • Низкая чувствительность матрицы из-за сниженной площади светочувствительного элемента, что является небольшим минусом;
  • Низкое время сканирования, из-за чего объекты, расположенные в качестве, периодически могут искажаться;
  • Обработка картинки на пикселе, повышающая число помех.

CMOS-matricCMOS-matric

Тип CCD

Наиболее важным преимуществом CCD-матриц является высококачественное изображение с отсутствием посторонних шумов. Также к достоинствам данной технологии можно считать высокий, практически 100% коэффициент заполнения. Такие камеры относятся к профессиональным устройствам и позволяют получить динамичное цветное изображение.

К недостаткам CCD-матриц можно отнести:

  • Слишком высокую стоимость;
  • Большое потребление энергии.

Довольно часто в магазинах техники можно встретить видеокамеры с 2-3 матрицами, если средства позволяют, то смело можно покупать данное устройство. Ведь несколько матриц всегда лучше, нежели одна.

videokamera-s-3-matricamivideokamera-s-3-matricami

Придя в магазин и спрашивая о размерах матрицы видеокамеры, вы можете получить от консультанта следующий ответ: 1\2, 1\3, 1\4 и т.д. Не пугайтесь столь странных ответов, эти числа не что иное, как дюймы. Тут нужно понимать, что чем выше показатель физического размера матрицы, тем качественнее будет изображение. То есть камера в 1\2 дюйм будет лучше, чем 1\8, это также отразится на стоимости аппарата.

На этом у меня все, до новых встреч, дорогие читатели. Надеюсь, что данная информация станет полезной для Вас и Ваших друзей. Подписывайтесь на статьи блога и будьте всегда в курсе свежих новостей технологического мира.

Спасибо за внимание! До новых встреч на моём блоге. С уважением, Ростислав Кузьмин.

Добавить комментарий

Ваш адрес email не будет опубликован.