Меню

Техпроцесс процессора на что влияет – Будущее развитие технологий процессоров, техпроцесс 1нм и мультиполигональные гетероструктуры — Stevsky.ru

Содержание

Что такое техпроцесс процессора? | AndroidLime

Рассказываем об одной из главной характеристик мобильных чипсетов.

Процессор современного смартфона — сложный механизм, включающий в себя тысячи компонентов. Такие показатели, как частота и количество ядер, постепенно теряют смысл, а на смену им приходит понятие техпроцесса, характеризующее производительность и энергоэффективность процессора.

Что такое техпроцесс?

Процессор включает в себя тысячи транзисторов, которые пропускают или блокируют электрический ток, что позволяет логическим схемам работать в двоичной системе. Благодаря уменьшению размер транзисторов и расстояния между ними производители добиваются от чипсета большей продуктивности.

Техпроцесс процессора

Уменьшенные транзисторы потребляют меньше энергии, при этом не утрачивая и производительность. Несмотря на то, что размер транзисторов напрямую не влияет на мощность, этот параметр стоит рассматривать как одну из характеристик, оказывающих влияние на скорость выполнения задач за счет конструктивных изменений в работе устройства. Размер транзистора по сути и характеризует техпроцесс процессоров.

За счет уменьшения расстояния между компонентами процессора уменьшается и объем энергии, которая необходима для их взаимодействия. Благодаря этому чипы с меньшим техпроцессом показывают большую автономность по сравнению с чипами с большим показателем технологического процесса. В отличие от большинства параметров смартфона, чем меньше число, характеризующее техпроцесс, тем лучше. В нашем случае это нанометры (нм).

Развитие техпроцесса в смартфонах

В первом Android-смартфоне HTC Dream (2008 год) процессор работал на 65-нм чипсете. В сегодняшних среднебюджетных моделях этот параметр варьируется в пределах 28-14 нм. Флагманские и игровые смартфоны часто оснащены 14 и даже 10-нм процессорами, поэтому они мощные, энергоэффективные и в меньшей степени подвержены нагреванию. Учитывая, что развитие технологий нацелено на машинное обучение и искусственный интеллект, для достижения новых высот в производительности техпроцесс с большой вероятностью будет уменьшен до 5, а потом и до 1 нм.

Процессор

Выбирая смартфон, важно отталкиваться не только от количества ядер и тактовой частоты, но и обращать внимание на техпроцесс. Именно этот параметр косвенно укажет на актуальность чипсета, производительность, склонность к перегреву и автономность. На сегодняшний день устройства в среднем ценовом сегменте уже оснащены 14-нм процессорами, что на данный момент можно назвать актуальным и сбалансированным решением для любого современного смартфона.

Процессор Загрузка...

Техпроцесс в центральных и графических процессорах

Несмотря на то, что техпроцесс напрямую не влияет на производительность процессора, мы все равно будем упоминать его как характеристику процессора, так как именно техпроцесс влияет на увеличение производительности процессора, за счет конструктивных изменений. Хочу отметить, что техпроцесс, является общим понятием, как для центральных процессоров, так и для графических процессоров, которые используются в видеокартах.

Основным элементом в процессорах являются транзисторы – миллионы и миллиарды транзисторов. Из этого и вытекает принцип работы процессора. Транзистор, может, как пропускать, так и блокировать электрический ток, что дает возможность логическим схемам работать в двух состояниях – включения и выключения, то есть во всем хорошо известной двоичной системе (0 и 1).

Техпроцесс – это, по сути, размер транзисторов. А основа производительности процессора заключается именно в транзисторах. Соответственно, чем размер транзисторов меньше, тем их больше можно разместить на кристалле процессора.

Новые процессоры Intel выполнены по техпроцессу 22 нм. Нанометр (нм) – это 10 в -9 степени метра, что является одной миллиардной частью метра. Чтобы вы лучше смогли представить насколько это миниатюрные транзисторы, приведу один интересный научный факт: « На площади среза человеческого волоса, с помощью усилий современной техники, можно разместить 2000 транзисторных затворов!»

Если брать во внимание современные процессоры, то количество транзисторов, там уже давно перевалило за 1 млрд.

Ну а техпроцесс у первых моделей начинался совсем не с нанометров, а с более объёмных величин, но в прошлое мы возвращаться не будем.

Примеры техпроцессов графических и центральных процессоров

Сейчас мы рассмотрим парочку последних техпроцессов, которые использовали известные производители графических и центральных процессоров.

1. AMD (процессоры):

Техпроцесс 32 нм. К таковым можно отнести Trinity, Bulldozer, Llano. К примеру, у процессоров Bulldozer, число транзисторов составляет 1,2 млрд., при площади кристалла 315 мм2.

Техпроцесс 45 нм. К таковым можно отнести процессоры Phenom и Athlon. Здесь примером будет Phemom, с числом транзисторов 904 млн. и площадью кристалла 346 мм2.

2. Intel:

Техпроцесс 22 нм. По 22-нм нормам построены процессоры Ivy Bridge (Intel Core ix - 3xxx). К примеру Core i7 – 3770K, имеет на борту 1,4 млрд. транзисторов, с площадью кристалла 160 мм2, видим значительный рост плотности размещения.

Техпроцесс 32 нм. К таковым можно отнести процессоры Intel Sandy Bridge (Intel Core ix – 2xxx). Здесь же, размещено 1,16 млрд. на площади 216 мм2.

Здесь четко можно увидеть, что по данному показателю, Intel явно обгоняет своего основного конкурента.

3. AMD (ATI) (видеокарты):

Техпроцесс 28 нм. Видеокарта Radeon HD 7970

4. Nvidia:

Техпроцесс 28 нм. Geforce GTX 690

Вот мы и рассмотрели понятие техпроцесса в центральных и графических процессорах. На сегодняшний день разработчиками планируется покорить техпроцесс в 14 нм, а затем и 9, с применением других материалов и методов. И это далеко не предел!


Что такое техпроцесс в процессоре


Техпроцесс в центральных и графических процессорах

Несмотря на то, что техпроцесс напрямую не влияет на производительность процессора, мы все равно будем упоминать его как характеристику процессора, так как именно техпроцесс влияет на увеличение производительности процессора, за счет конструктивных изменений. Хочу отметить, что техпроцесс, является общим понятием, как для центральных процессоров, так и для графических процессоров, которые используются в видеокартах.

Основным элементом в процессорах являются транзисторы – миллионы и миллиарды транзисторов. Из этого и вытекает принцип работы процессора. Транзистор, может, как пропускать, так и блокировать электрический ток, что дает возможность логическим схемам работать в двух состояниях – включения и выключения, то есть во всем хорошо известной двоичной системе (0 и 1).

Техпроцесс – это, по сути, размер транзисторов. А основа производительности процессора заключается именно в транзисторах. Соответственно, чем размер транзисторов меньше, тем их больше можно разместить на кристалле процессора.

Новые процессоры Intel выполнены по техпроцессу 22 нм. Нанометр (нм) – это 10 в -9 степени метра, что является одной миллиардной частью метра. Чтобы вы лучше смогли представить насколько это миниатюрные транзисторы, приведу один интересный научный факт: « На площади среза человеческого волоса, с помощью усилий современной техники, можно разместить 2000 транзисторных затворов!»

Если брать во внимание современные процессоры, то количество транзисторов, там уже давно перевалило за 1 млрд.

Ну а техпроцесс у первых моделей начинался совсем не с нанометров, а с более объёмных величин, но в прошлое мы возвращаться не будем.

Примеры техпроцессов графических и центральных процессоров

Сейчас мы рассмотрим парочку последних техпроцессов, которые использовали известные производители графических и центральных процессоров.

1. AMD (процессоры):

Техпроцесс 32 нм. К таковым можно отнести Trinity, Bulldozer, Llano. К примеру, у процессоров Bulldozer, число транзисторов составляет 1,2 млрд., при площади кристалла 315 мм2.

Техпроцесс 45 нм. К таковым можно отнести процессоры Phenom и Athlon. Здесь примером будет Phemom, с числом транзисторов 904 млн. и площадью кристалла 346 мм2.

2. Intel:

Техпроцесс 22 нм. По 22-нм нормам построены процессоры Ivy Bridge (Intel Core ix - 3xxx). К примеру Core i7 – 3770K, имеет на борту 1,4 млрд. транзисторов, с площадью кристалла 160 мм2, видим значительный рост плотности размещения.

Техпроцесс 32 нм. К таковым можно отнести процессоры Intel Sandy Bridge (Intel Core ix – 2xxx). Здесь же, размещено 1,16 млрд. на площади 216 мм2.

Здесь четко можно увидеть, что по данному показателю, Intel явно обгоняет своего основного конкурента.

3. AMD (ATI) (видеокарты):

Техпроцесс 28 нм. Видеокарта Radeon HD 7970

4. Nvidia:

Техпроцесс 28 нм. Geforce GTX 690

Вот мы и рассмотрели понятие техпроцесса в центральных и графических процессорах. На сегодняшний день разработчиками планируется покорить техпроцесс в 14 нм, а затем и 9, с применением других материалов и методов. И это далеко не предел!

we-it.net

Что такое технологический процесс процессора и на что он влияет

Все современные вычислительные технологии базируются на основе полупроводниковой электронной техники. Для ее производства используются кристаллы кремния – одного из самых распространенных минералов в составе нашей планеты. С момента ухода в прошлое громоздких ламповых систем и с развитием транзисторных технологий этот материал занял важное место в производстве вычислительной техники.

Центральные и графические процессоры, чипы памяти, различные контроллеры – все это производится на основе кремниевых кристаллов. Уже полвека основной принцип не меняется, совершенствуются только технологии создания чипов. Они становятся более тонкими и миниатюрными, энергоэффективными и производительными. Главным параметром, который при этом усовершенствуется, является техпроцесс.

Что такое техпроцесс

Практически все современные чипы состоят из кристаллов кремния, которые обрабатываются методом литографии, с целью формирования отдельных транзисторов. Транзистор – ключевой элемент любой интегральной микросхемы. В зависимости от состояния электрического поля, он может передавать значение, эквивалентное логической единице (пропускает ток) или нулю (выступает изолятором). В чипах памяти с помощью комбинаций нулей и единиц (положений транзистора) записываются данные, а в процессорах – при переключении производятся вычисления.

В 14-нм технологии (по сравнению с 22-нм) сокращено количество барьеров, увеличена их высота, уменьшено расстояние между диэлектрическими ребрами

Технологический процесс – это процедура и порядок изготовления какой-либо продукции. В электронной промышленности, в общепринятом значении, это величина, которая указывает на разрешающую способность оборудования, применяемого при производстве чипов. От нее также напрямую зависит размер функциональных элементов, получаемых после обработки кремния (то есть, транзисторов). Чем чувствительнее и точнее оборудование используется для обработки кристаллов под заготовки процессоров – тем тоньше будет техпроцесс.

Что значит числовая величина техпроцесса

В современном полупроводниковом производстве наиболее распространена фотолитография – вытравливание элементов на кристалле, покрытом диэлектрической пленкой, с помощью воздействия света. Именно разрешающая способность оптического оборудования, излучающего свет для вытравливания, и является техпроцессом в общепринятом толковании этого слова. Это число указывает, насколько тонким может быть элемент на кристалле.

Фотолитография – вытравливание элементов на кристалле

На что влияет техпроцесс

Техпроцесс напрямую сказывается на количестве активных элементов полупроводниковой микросхемы. Чем тоньше техпроцесс – тем больше транзисторов поместится на определенной площади кристалла. В первую очередь это значит увеличение количества продукции из одной заготовки. Во вторую – снижение потребления энергии: чем тоньше транзистор – тем меньше он расходует энергии. Как итог, при равном количестве и структуре размещения транзисторов (а значит, и увеличения производительности) процессор будет меньше расходовать энергию.

Минусом перехода на тонкий техпроцесс является удорожание оборудования. Новые промышленные агрегаты позволяют делать процессоры лучше и дешевле, но сами набирают в цене. Как следствие, лишь крупные корпорации могут вкладывать миллиарды долларов в новое оборудование. Даже такие известные компании, как AMD, Nvidia, Mediatek, Qualcomm или Apple самостоятельно процессоров не делают, доверяя это задание гигантам вроде TSMC.

Что дает уменьшение техпроцесса

При уменьшении технологического процесса производитель получает возможность поднять быстродействие, сохранив прежние размеры чипа. К примеру, переход с 32 нм на 22 нм позволил вдвое увеличить плотность транзисторов. Как следствие, на том же кристалле, что раньше, стало возможным размещение не 4, а уже 8 ядер процессора.

Для пользователей главное преимущество заключается в снижении энергопотребления. Чипы на более тонком техпроцессе требуют меньше энергии, выделяют меньше тепла. Благодаря этому можно упростить систему питания, уменьшить кулер, меньше внимания уделить обдуву компонентов.

Схематический прогноз изменения техпроцесса в будущем

Техпроцесс процессоров на смартфонах

Смартфоны требовательны к аппаратным ресурсам и быстро расходуют заряд аккумулятора. Поэтому, для замедления расхода разряда, разработчики процессоров для мобильных устройств стараются внедрять в производство самые новые техпроцессы. К примеру, некогда популярные двухъядерники MediaTek MT6577 производились по техпроцессу 40 нм, а Qualcomm Snapdr

Будущее техпроцесса или когда «умрет» закон Мура? / Intel corporate blog / Habr

В связи с тем, что закон Мура выполняется уже на протяжении 50-и лет и тема того, сколько ему «еще осталось» обсуждается повсюду, в том числе и на Хабре хотелось бы поделиться мыслями и планами тех, кому данный закон придется утверждать и поддерживать, как минимум в ближайшие годы.

Ниже дается мой скромый перевод блога людей, отвечающих за архитектуру и прозводство в компании Intel: Марка Бора(Mark Bohr) и Санджея Натараджана(Sanjay Natarajan) по поводу того, как долго, с их точки зрения, будет развиваться техпроцесс в сторону уменьшения и какие технологии, с их точки зрения, помогут поддерживать прогресс в данном направлении.

В последнее время часто возникает вопрос: «Подходит ли к концу процесс уменьшения размеров транзисторов?» Поскольку никто не считает, что процесс совершенствования технологий может прекратиться совсем, более разумным будет вариант этого вопроса: «Становится ли технически или практически невозможным разработка и внедрение новых техпроцессов примерно каждые два года, как это предсказано законом Мура почти 50 лет назад?»
Перед тем, как ответить на данный вопрос, сначала заглянем в историю. Когда-то развитие технологий процесса производства полупроводников давалось значительно легче. Базовая архитектура МОП-транзисторов была фиксирована, и путь к разработке нового процесса был ясен и прост: уменьшить габариты, уменьшить вертикальный размер, уменьшить электрические поля и — вуаля – готов новый более быстрый и более энергоэффективный транзистор. Конечно, изобретения, типа точечных и halo(ореол) имплантаций, оксидов силицида и нитрида для затвора были необходимы для решения проблем на этом пути, но основная архитектура оставалась прежней на протяжении многих поколений. (Когда мы говорим про изобретения, давайте не будем забывать об уменьшении длины межсоединений, где предложены медные проводники и планаризация.)

Конец масштабирования?
Даже в период «расцвета» данных технологий, отраслевые эксперты предсказывали конец масштабирования. Утверждения экспертов, как «Оптическая литография достигнет своих пределов в диапазоне 0.75-0.50 мкм,» «Минимальные геометрии[транзисторов] будут достигнуты в диапазоне от 0,3 до 0,5 микрон», «рентгеновская литография понадобится при размерах менее 1 микрона,» «медные межсоединения никогда не будет работать», и «Масштабирование закончится примерно через 10 лет», были сделаны публично, и все кажутся странными спустя время.
Пожалуй, 130-нм технология была последней настоящей технологией в этой архитектуре. Начало 1990-х годов отмечено огромным изменением в этой отрасли в связи с изобретением корпорацией Intel одноосного напряженного кремния в 90-нм технологии. Это изменение отмечено использованием кремний-германиевых сплавов в истоке/стоке PMOS (р-канальный МОП) транзистора, оно открыло эпоху больших перемен в материалах в дополнение к существующим геометрическому и электрическому масштабированиям. 65-нм этап был последней возможностью, чтобы использовать «рабочую лошадку» отрасли, SiON диэлектрик затвора. Начиная с 45-нм, Intel сделал переход к экзотическому диэлектрику на основе диоксида Гафния c высоким показателем диэлектрической проницаемости k и сложной сэндвич-структурой пленок. Наконец, 22-нм этап ознаменовал конец 50-го года жизни планарного МОП транзистора и переход на tri-gate технологию 3D-транзисторов. Сегодняшнее состояние технологии напоминает транзистор конца 1980-х примерно настолько же, насколько Феррари напоминает конный экипаж.

Не только структура транзистора и материалов резко изменилась за последние десятилетия, но и цель масштабирования транзистора также изменилась. В 1980-х и 1990-х годах классическое масштабирование обеспечивало значительные улучшения в скорости транзистора для работы микропроцессоров на более высоких рабочих частотах. Но мы платили цену за очень высокую плотность мощности все более высокими ее утечками. 2000-е годы открыли эпоху, когда предел плотности мощности и рыночный спрос на мобильные компьютеры изменили фокус транзисторных технологий с повышенной производительности к уменьшенному энергопотреблению. Современные компьютеры, являются ли они высокопроизводительными серверами или маломощными мобильными телефонами, все требуют повышения энергоэффективности и снижения утечки энергии. А рост интереса к системам-на-чипе (SOC) придает все большее значение созданию широкого спектра устройств на одной микросхеме, из высокопроизводительных транзисторов с ультра-низким уровнем утечки.

Радикальные новые подходы
Историческая перспектива очень важна, потому что она напоминает нам, что единственной постоянной в нашей отрасли является изменение (или, как выразился Йоги Берра, «будущее — это не то, что это было»). В будущем радикально новая архитектура может создать еще один колоссальный сдвиг, когда постепенное улучшение перестает работать. Существует много потенциально привлекательных вариантов технологий вроде туннельных полевых транзисторов, BISFET (bilayer pseudospintronic field-effect transistors) транзисторов, полевых транзисторов на основе графена, и полевых транзисторов на основе спина. Все они активно исследуются в ведущих полупроводниковых компаниях.

Еще одним трендом, который приобретает все большее значение, является более тесная интеграция технологических процессов, дизайна и архитектуры продуктов. За последние несколько поколений, ограничения в процессе масштабирования привели к ограничениям в дизайне, которые, в свою очередь, требуют более тесной совместной оптимизации между дизайном и процессом для достижения лучшего результата. Эта тенденция, вероятно, сохранится и даже будет расти. Будущее будет включать в себя интеграцию новых процессов, дизайна и архитектуры, такие как 3D упаковку внутри чипа, а не только внутри TSV(through-silicon via) упаковки и новых подходов к вычислениям, таких как техпроцесс, оптимизированный для не-булевой логики.

Вполне возможно, что новая архитектура техпроцесса завтра сделает настолько же сильный рывок, что «сегодняшний Феррари» станет выглядеть как древний «конный экипаж». Поскольку мы живем и работаем в это удивительное время для полупроводниковой промышленности, и мы надеемся увидеть еще 50 лет «работы» закона Мура.

Техпроцесс видеокарты что это такое и на что он влияет?

Опубликовано 1.10.2018 автор — 0 комментариев

Привет, друзья! Возможно, погружаясь в тематику компьютерного железа, вы встречали такое понятие как техпроцесс видеокарты, что это такое, на что влияет и какой из них лучший, расскажу в сегодняшней публикации. Все готово, поехали.)

Где там транзисторы

Любой процессор состоит из огромного количества микроскопических транзисторов – что ЦП, что графический чип. Однако транзисторы здесь не совсем привычные – например, не такие, как в радиоприемнике. Реализованы они на куске кремния, из которого состоит процессор.

Сегодня размеры этих компонентов измеряются уже в нанометрах – одной миллиардной части метра – например, 40 нм, 22 нм или 16 нм. Чем меньше цифра, тем тоньше техпроцесс и тем больше транзисторов умещается на той же площади кристалла.

Вообще, техпроцессом называется совокупность действий оборудования по изготовления какой-либо детали, в нашем случае микросхемы. Однако применительно к процессорам и графическим чипам такое обозначение – разрешение печатного оборудования, которое создает компоненты на поверхности кристалла.

Как узнать техпроцесс конкретной детали? Он всегда указан в сопроводительной документации.

Однако учитывайте, что во многих интернет-магазинах, в характеристиках товара этого параметра нет, поэтому при заказе комплектующих, необходимо уточнять детали у консультанта. Как вариант, можно узнать эту информацию на официальном сайте производителя.

Влияние техпроцесса

Технологии делаются все совершеннее, позволяя уменьшить техпроцесс, увеличив тем самым количество транзисторов на одной и той же площади. Что значит это в практическом плане?Видео чип на картеУвеличение количества транзисторов позволяет увеличить количество логических блоков и тем самым производительность процессора при тех же физических размерах. Как вариант, можно не изменять количество транзисторов, но уменьшить размеры компонента.

При уменьшении размеров транзисторов, снижается тепловыделение и энергопотребление. Благодаря этому, можно увеличить количество ядер процессора без риска перегрева, что негативно сказывается на производительности. Особенно это актуально для лэптопов и планшетов – да, в крутых моделях тоже установлены видеокарты, созданные по тому же принципу.

Переход на новый, более совершенный техпроцесс, требует от производителя железа проведения фундаментальных исследований, разработки нового оборудования, его создания и обкатки.

По этой причине новые модели центральных и графических процессоров стоят чрезвычайно дорого. Но за то, чтобы быть на гребне волны прогресса, никаких денег не жалко, не правда ли?

Также хочу акцентировать внимание на том, что обкатка нового техпроцесса происходит не сразу, и поэтому первые партии новых комплектующих могут получиться откровенно неудачными.

При увеличении площади кристалла, сложность только возрастает. Увы, лепить многоядерные процессоры по новой технологии вот так «с лету», не получится – никто не хочет работать себе в убыток и разбираться потом с возмущенными покупателями.

Дальнейшие перспективы

Некоторые из вас, вероятно, подумали, что развитие технологий – дело времени, и техпроцесс можно уменьшать до бесконечности. Увы, это не совсем верно. Физические свойства материи имеют определенные рамки, и со временем настанет тот предел, меньше которого создавать транзисторы, попросту не получится.Графический процессор на платеВот только каким будет их размер и когда это будет – пока не совсем понятно. Вполне вероятно, что к тому времени изобретут какую-нибудь принципиально иную технологию, а процессоры на основе кремниевого кристалла канут в Лету, как это случилось с ламповой электроникой.

Надеюсь, исходя из вышеизложенного, вам уже понятен ответ на вопрос: 14 нм или 28 нм – что лучше. Если я не вполне понятно излагал свои мысли, то лучше 14 нм, однако стоят, созданные по такому техпроцессу компоненты, дороже.

А вообще, чтобы разобраться, какой девайс вам лучше купить при сборке или апгрейде компа, советую ознакомиться с публикациями «Из чего состоит современная видеокарта для ПК» и «Правильный выбор видеокарты по параметрам для компьютера». О том, где лучше покупать комплектующие для системного блока, вы можете почитать здесь.

В качестве возможного варианта, советую обратить внимание на видеокарты серии 1060 – например, ASUS GeForce GTX 1060 DUAL OC [DUAL-GTX1060-O3G]. За приемлемую цену вы сможете с комфортом обрабатывать видеоролики и запускать новые игры (правда, некоторые из них не на максимальных, а на средних настройках качества графики). На ближайшие несколько лет такого девайса, вам хватит с головой, я это гарантирую.

На этом я с вами прощаюсь. Не забудьте поставить лайк репосту этой статьи в социальных сетях. Также подпишитесь на новостную рассылку, чтобы быть в курсе последних обновлений моего чрезвычайно полезного блога.

С уважением, Андрей Андреев

Техпроцесс процессора — что это такое?

Центральный процессор в компьютере играет самую главную роль. Его можно считать "мозгом" всей системы, так как от него зависит количество обработанных данных, возможность запуска системы, совместимость оборудования. В серверах используются особые виды процессоров, которые предназначены именно для таких задач, то есть для вычислений. Вот как работает процессор компьютера.

Существует и такое понятие, как графический процессор, — он находится не на материнской плате, как центральный, а в графическом адаптере. Его задача — обрабатывать графические данные, передавать их на компьютер и выводить изображение на экран монитора.

У каждого из них свое строение и техпроцесс процессора, о котором дальше пойдет речь.

Процесс изготовления процессора

Процесс изготовления процессора

Последние полвека в изготовлении процессоров и прочей подобной техники используется кристалл кремния. Литографический метод обработки позволяет создавать отдельные транзисторы, которые очень важны, ведь из них и состоят процессоры.

Ориентируясь на актуальное состояние электрического поля, транзисторы могут блокировать или пропускать электрический ток. Это, кстати, основополагающая часть работы двоичной системы, которая заключена в этих двух положениях — включенном и выключенном.

Так что такое техпроцесс? Этот термин используется в показателях для того, чтобы указать на размер используемых транзисторов, из которых состоит любой процессор.

Возвращаясь к производству процессоров, можно выделить такой процесс, как фотолитография. Эта функция нужна для того, чтобы покрыть кристалл диэлектрическим материалом, из которого с помощью света выделяются транзисторы. В зависимости от возможности аппарата — тонкости и чувствительности, определяется техпроцесс процессора, то есть его толщина в нанометрах.

На что влияет размер?

На что влияет размер

Как известно, чем тоньше техпроцесс процессора, тем большее количество транзисторов будет расположено на чипе.

Если размер будет небольшим, то его энергопотребление и количество выделяемого тепла будут в разы меньше. Именно по этой причине небольшой техпроцесс процессора позволяет размещать чип на портативных устройствах, а за счет этого мобильное устройство сможет дольше держать заряд.

Размер имеет значение еще и в экономических целях, так как при небольших затратах материала увеличивается численность изготавливаемых чипов. Однако это палка о двух концах, потому что для более тонкого техпроцесса процессора необходимо топовое дорогое оборудование.

Малые детали строения позволяют разместить на чипе большее количество элементов, за счет чего растет производительность процессора. При всем при этом параметры размера самого чипа остаются неизменными.

Если у процессора есть техническая возможность для того, чтобы разогнаться, то чем меньше предел техпроцесса процессора, тем выше будут частоты.

Технический рост

Технический рост

Примерно с 70-х по 80-е годы были созданы процессоры с техпроцессом в три микрометра. Такого прорыва в компьютерных технологиях достигли компании "Зилог" и "Интел" в 75-79-х годах. С тех пор было принято решение улучшать качество литографического оборудования.

С 1990 года в архитектуре процессора появились значимые изменения, тогда же и были выпущены чипы с 0,35-микрометровым техпроцессом, или 350-нанометровым. Однако в начале двадцать первого века размеры транзисторов были уменьшены в три раза, что равнялось 130 нанометрам.

Самый значимый технологический прорыв пришелся на 2004 год — именно в то время производители освоили технологию 65-нанометрового технологического процесса. Тогда же поступили в продажу Core 2 Duo и его конкурент — AMD Phenom X4. Что касается консолей, то для Xbox 360 были произведены процессоры Falcon и Jasper.

Значимые изменения

Две ведущие компании по производству процессоров достигли размера в 32 нанометра, демонстрируя это в процессорах поколения Sandy Bridge и AMD Bulldozer.

Компания "Интел" создала кристалл, способный работать с частотой 3500 мегагерц, а количество ядер стало равно четырем. Также появился более усовершенствованный графический чип, встроенный в процессор, частота которого доходит до полутора гигагерц. В то же время чип обладал поддержкой новой оперативной памяти, контроллером интерфейса PCI-E второго поколения и протоколами x86. Увеличилась скорость потока данных, благодаря наличию кэша третьего уровня, размер которого - восемь мегабайт.

Что касается ее прямого конкурента, AMD, то ему удалось оснастить процессор шестнадцатью ядрами с частотой до 4000 мегагерц. В остальном отличия от "Интела" практически нет.

Однако только "синей" команде удалось достичь ощутимого прорыва и выпустить чипы с 22-нанометровым техпроцессом, что позволило процессорам семейства Ivy Bridge, Haswell и Xeon, серий Core i5 и i7 обеспечить высокую производительность, понижая при этом потребляемую энергию.

Причины уменьшения техпроцесса

Причины уменьшения техпроцесса

Производительность процессоров увеличивается только за счет количества транзисторов, при этом значение тепловыделения не подвергается изменению.

Когда уменьшается технологический процесс, производители имеют возможность разместить на территории чипа большее количество остальных составляющих вроде ядер и дополнительных компонентов.

Будущее развитие технологий процессоров, техпроцесс 1нм и мультиполигональные гетероструктуры - Stevsky.ru

tranzistors-mПредел техпроцесса при производстве микросхем

По заверениям учёных, размер транзисторов, использующихся в процессорах, имеет физический предел. На данный момент достигнут уровень 10нм для одного транзистора и началась разработка техпроцесса 7нм на заводах TSMC. Следующий шаг - 5нм, затем 3нм. Где-то в этой области уже наступает квантовая неопределённость и управление микросхемами этого уровня точности современными методами программирования будет затруднено: компьютеры начнут выдавать недостоверные результаты. Последний физический предел, который теоретически можно взять - 1нм. Дальше идёт уже атомарный уровень и просто невозможно создать единицу машинной логики из нескольких атомов. 

Зачем нужна такая высокая производительность и сколько лет ещё осталось?

 

Аппетит приходит во время еды и человечество привыкло жить в условиях постоянно повышающихся мощностей вычислительной техники, попутного снижения энергопотребления устройств и снижения их стоимости. Мы буквально подсели на это: вся современная экономика завязана на этот прогресс и закладывает в свои планы постоянное повышение планки. Стоит технологиям остановиться в росте или даже немного замедлить его, и весь мир ждёт глубочайший кризис, потому что он на это уже не рассчитывает! Остановятся многие космические и военные программы, мигом повысятся затраты на все производства и сократятся инвестиции в высокие технологии, ведь логика проста: нет будущего у технологии - нет возврата капитала на инвестиции.

Пока что ещё есть время. Достижение техпроцесса 7нм планируется в 2018 году (Samsung, TSMC, Intel), выход потребительского рынка на 5нм проектные нормы - в 2020 году, покорение порога 3нм - в 2022 году. Есть планы по разработке 2нм техпроцесса и кто-то уже подумывает об 1нм. Но дальше тупик. В 2030 году точно. Что же будет предпринимать эта гигантская отрасль, придя к своему победному финалу? 

Мультиполигональные гетероструктуры

Новейшие современные техпроцессы используют технологию производства транзисторов FinFET, которую пафосно именуют 3D-структурой, так как расположение транзисторов на схеме производится не планарно, а в объёме, в несколько слоёв, которые связаны друг с другом в вертикальном направлении. Переход к структуре FinFET ознаменовался заметным повышением плотности упаковки элементов и улучшением алгоритмов ветвления решений: если объяснить грубо, то вместо постепенного перебора значений система получила возможность сразу находить наиболее близкие варианты ответов.

Судя по удачно складывающейся практике, дальнейшее повышение количества соединений между элементами не за горами и рано или поздно структура действительно станет трёхмерной, представляя собой мультиполигональный объект, в котором каждый элемент граничит не с двумя (планарное размещение транзисторов), не с четырьмя/шестью, а с десятком других элементов. Возможно, структура элементов также изменится в связи с этим и передача сигнала будет происходить не в одном направлении, а сразу в нескольких.

Не нужны более тонкие техпроцессы, особенно когда их реализация противоречит законам физики, но нужны более умные техпроцессы, способные лучше адаптироваться под вычислительные нагрузки в реальном мире уже на уровне структуры. 

poligonal

Поэтому процессоры также должны стать и гетероструктурными. Постараюсь пояснить, что это значит:

  • сейчас обычный мобильный процессор включает в себя пять основных элементов - CPU, GPU, RAM, ISP, DSP. 
  • CPU отвечает за вычисления с плавающей запятой
  • GPU занимается графикой
  • RAM хранит в краткосрочной памяти данные
  • ISP обрабатывает фотки на лету
  • DSP контролирует многочисленные датчики и сенсоры

Модем и встроенная память пока находятся на плате отдельно, но в ближайшем будущем могут также переехать внутрь процессора, что ускорит их работу и удешевит производство. Такую структуру можно условно назвать псевдогетерогенной, так как наличие отдельных элементов даёт лишь видимость гетерогенности. По факту они все по отдельности и каждый отвечает за свою часть задачи. Я же говорю о полной гетерогенности, когда внутри процессора всё будет перемешано: элементы всех сопроцессоров будут вписаны внутрь вычислительных ядер таким образом, что отделить их на плате будет просто невозможно. Добавится ещё парочка специализированных узлов и они также уместятся внутри чипа, а для контроля всех процессов потребуется некая сетка сверху, объединяющая все элементы на верхнем уровне. Ничего не напоминает по строению?

Heterostructures

Процессоры и структура головного мозга

Да, описанные мной новшества в микропроцессорах напоминают структуру головного мозга человека: внутри его полушарий имеются отделы с разной специализацией. Какая-то часть мозга отвечает за когнитивные функции, какая-то - за математические вычисления, где-то интерпретируются сигналы о боли и, например, голоде, где-то хранятся воспоминания, а всё это сверху контролируется тончайшей сетью нейронов коры головного мозга. У нас в руках идеальный прототип - природный микропроцессор невиданной мощи с идеально развитой структурой. Нам нужно лишь внимательно исследовать особенности его работы и постараться скопировать максимально детально. Соблюдение архитектурных правил нашего мозга позволит создать наиболее человекоподобный машинный интеллект, который будет воспринимать и интерпретировать информацию также, как это сделал бы человеческий мозг. Только быстрее и эффективнее, без потерь и дефектов восприятия. Компьютер должен стать не просто как человек, он должен стать как суперчеловек! И поздно этого пугаться и просить приостановить махину прогресса: это направление развития уже не остановить и нужно привыкать жить в мире мыслящих машин, чтобы не стать вдруг его изгоем. Буквально десяток лет и всё уже случится.

mozg

Непрерывная логика взамен дискретной

Ещё один важный шаг, который должна сделать компьютерная техника вместе со всем человечеством в целом - это переход от дискретной логике к непрерывной. До сих пор и ещё сколько то лет в будущем мы воспринимали и будем воспринимать всё окружающее дискретно: один человек, один компьютер, одно слово, один метр, одна секунда. При том, что сознание наше способно мыслить непрерывно и делает это постоянно, просто у нас нет инструментов для определения этой непрерывности, нам нужно обязательно отделить одно от другого - метры от километров, человека от общества, слово от мысли, а секунду от вечности. Возможно, самообучающиеся машины смогут сделать это быстрее и перейти на совершенно иной уровень мировосприятия, не детерминирующий ни предметы, ни события, ни само время. Фундамент непрерывной логики уже есть, и машины умеют оперировать этими понятиями уже сейчас: вместо конкретного поискового запроса - семантический вектор из ключевых слов, вместо конкретного человека - статистическая выборка даже без определённого числа персон, просто векторы. Подобное мышление будет способствовать гораздо более глубокому изучению окружающего мира и открытию новых фундаментальных законов бытия. Если мы за сотни лет неуёмного технического прогресса не смогли открыть их для себя, возможно это сможет сделать искусственный интеллект, построенный без этой нерушимой стенки в мозгу, заставляющей нас считать секунды, нежели чем наслаждаться вечностью...

Строение головного мозга видео

 


< Предыдущая   Следующая >

Похожие материалы:

Новые материалы по этой тематике:

Старые материалы по этой тематике:


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *